Global detection of human variants and isoforms by deep proteome sequencing

[1]  James C. Wright,et al.  Identifying individuals using proteomics: are we there yet? , 2022, Frontiers in Molecular Biosciences.

[2]  J. Cox Prediction of peptide mass spectral libraries with machine learning , 2022, Nature Biotechnology.

[3]  Hagen U. Tilgner,et al.  Single-nuclei isoform RNA sequencing unlocks barcoded exon connectivity in frozen brain tissue , 2022, Nature Biotechnology.

[4]  Benjamin J. Polacco,et al.  Data-Independent Acquisition Protease-Multiplexing Enables Increased Proteome Sequence Coverage Across Multiple Fragmentation Modes. , 2022, Journal of proteome research.

[5]  E. Eyras,et al.  Uncovering the impacts of alternative splicing on the proteome with current omics techniques , 2022, Wiley interdisciplinary reviews. RNA.

[6]  N. Kelleher,et al.  The Human Proteoform Project: Defining the human proteome , 2021, Science advances.

[7]  C. Seoighe,et al.  Perspectives on Allele-Specific Expression. , 2021, Annual review of biomedical data science.

[8]  Stephen R. Williams,et al.  A spatially resolved brain region- and cell type-specific isoform atlas of the postnatal mouse brain , 2021, Nature Communications.

[9]  Philipp E. Geyer,et al.  Ethical Principles, Constraints, and Opportunities in Clinical Proteomics , 2021, Molecular & cellular proteomics : MCP.

[10]  James C. Wright,et al.  GENCODE 2021 , 2020, Nucleic Acids Res..

[11]  Rebekah L. Gundry,et al.  A high-stringency blueprint of the human proteome , 2020, Nature Communications.

[12]  Eric W. Deutsch,et al.  Research on The Human Proteome Reaches a Major Milestone: >90% of Predicted Human Proteins Now Credibly Detected, according to the HUPO Human Proteome Project. , 2020, Journal of proteome research.

[13]  J. Rappsilber,et al.  Proteomics Using Protease Alternatives to Trypsin Benefits from Sequential Digestion with Trypsin , 2020, bioRxiv.

[14]  Michael R. Shortreed,et al.  Improved Protein Inference from Multiple Protease Bottom-Up Mass Spectrometry Data. , 2019, Journal of proteome research.

[15]  J. Cox,et al.  High-quality MS/MS spectrum prediction for data-dependent and data-independent acquisition data analysis , 2019, Nature Methods.

[16]  Jian Wang,et al.  Assembling the Community-Scale Discoverable Human Proteome , 2018, Cell systems.

[17]  Mathias Wilhelm,et al.  A deep proteome and transcriptome abundance atlas of 29 healthy human tissues , 2018, bioRxiv.

[18]  Jesper V Olsen,et al.  Performance Evaluation of the Q Exactive HF-X for Shotgun Proteomics. , 2018, Journal of proteome research.

[19]  Karina D. Sørensen,et al.  An Optimized Shotgun Strategy for the Rapid Generation of Comprehensive Human Proteomes , 2017, Cell systems.

[20]  B. Blencowe The Relationship between Alternative Splicing and Proteomic Complexity. , 2017, Trends in biochemical sciences.

[21]  M. Tress,et al.  Alternative Splicing May Not Be the Key to Proteome Complexity. , 2017, Trends in biochemical sciences.

[22]  Robert J. Weatheritt,et al.  The ribosome-engaged landscape of alternative splicing , 2016, Nature Structural &Molecular Biology.

[23]  Jüergen Cox,et al.  The MaxQuant computational platform for mass spectrometry-based shotgun proteomics , 2016, Nature Protocols.

[24]  Marco Y. Hein,et al.  The Perseus computational platform for comprehensive analysis of (prote)omics data , 2016, Nature Methods.

[25]  N. Kelleher,et al.  Progress in Top-Down Proteomics and the Analysis of Proteoforms. , 2016, Annual review of analytical chemistry.

[26]  A. Heck,et al.  Six alternative proteases for mass spectrometry–based proteomics beyond trypsin , 2016, Nature Protocols.

[27]  Tianqi Chen,et al.  XGBoost: A Scalable Tree Boosting System , 2016, KDD.

[28]  Henk W. P. van den Toorn,et al.  An Augmented Multiple-Protease-Based Human Phosphopeptide Atlas. , 2015, Cell reports.

[29]  Derek J. Bailey,et al.  One-hour proteome analysis in yeast , 2015, Nature Protocols.

[30]  B. Frey,et al.  Widespread intron retention in mammals functionally tunes transcriptomes , 2014, Genome research.

[31]  B. Kuster,et al.  Mass-spectrometry-based draft of the human proteome , 2014, Nature.

[32]  Gary D Bader,et al.  A draft map of the human proteome , 2014, Nature.

[33]  William S. Hancock,et al.  Distinct splice variants and pathway enrichment in the cell-line models of aggressive human breast cancer subtypes. , 2014, Journal of proteome research.

[34]  Michael R. Shortreed,et al.  Large-scale mass spectrometric detection of variant peptides resulting from nonsynonymous nucleotide differences. , 2014, Journal of proteome research.

[35]  Xun Xu,et al.  SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads , 2013, Bioinform..

[36]  Mathias Wilhelm,et al.  Global proteome analysis of the NCI-60 cell line panel. , 2013, Cell reports.

[37]  Paul Theodor Pyl,et al.  The Genomic and Transcriptomic Landscape of a HeLa Cell Line , 2013, G3: Genes, Genomes, Genetics.

[38]  R. Zubarev The challenge of the proteome dynamic range and its implications for in‐depth proteomics , 2013, Proteomics.

[39]  Lloyd M. Smith,et al.  Proteoform: a single term describing protein complexity , 2013, Nature Methods.

[40]  Nadav S. Bar,et al.  Landscape of transcription in human cells , 2012, Nature.

[41]  Bronwen L. Aken,et al.  GENCODE: The reference human genome annotation for The ENCODE Project , 2012, Genome research.

[42]  Jennifer M. Bolin,et al.  Proteomic and phosphoproteomic comparison of human ES and iPS cells , 2011, Nature Methods.

[43]  Raymond K. Auerbach,et al.  A User's Guide to the Encyclopedia of DNA Elements (ENCODE) , 2011, PLoS biology.

[44]  M. Mann,et al.  Andromeda: a peptide search engine integrated into the MaxQuant environment. , 2011, Journal of proteome research.

[45]  Michael P Washburn,et al.  Advances in shotgun proteomics and the analysis of membrane proteomes. , 2010, Journal of proteomics.

[46]  D. Altshuler,et al.  A map of human genome variation from population-scale sequencing , 2010, Nature.

[47]  P. Bork,et al.  A method and server for predicting damaging missense mutations , 2010, Nature Methods.

[48]  J. Coon,et al.  Value of using multiple proteases for large-scale mass spectrometry-based proteomics. , 2010, Journal of proteome research.

[49]  Michael Sammeth,et al.  Complete Alternative Splicing Events Are Bubbles in Splicing Graphs , 2009, J. Comput. Biol..

[50]  Jeroen Krijgsveld,et al.  Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. , 2009, Analytical chemistry.

[51]  S. Henikoff,et al.  Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm , 2009, Nature Protocols.

[52]  Rainer Malik,et al.  Evaluation of the low-specificity protease elastase for large-scale phosphoproteome analysis. , 2008, Analytical chemistry.

[53]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[54]  B. Frey,et al.  Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing , 2008, Nature Genetics.

[55]  Eric T. Wang,et al.  Alternative Isoform Regulation in Human Tissue Transcriptomes , 2008, Nature.

[56]  M. Mann,et al.  Higher-energy C-trap dissociation for peptide modification analysis , 2007, Nature Methods.

[57]  Roger G Biringer,et al.  Enhanced sequence coverage of proteins in human cerebrospinal fluid using multiple enzymatic digestion and linear ion trap LC-MS/MS. , 2006, Briefings in functional genomics & proteomics.

[58]  Alan L Rockwood,et al.  Proteomic identification of oncogenic chromosomal translocation partners encoding chimeric anaplastic lymphoma kinase fusion proteins. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Achim Kramer,et al.  Mapping of phosphorylation sites by a multi-protease approach with specific phosphopeptide enrichment and NanoLC-MS/MS analysis. , 2005, Analytical chemistry.

[60]  Joshua J. Coon,et al.  Electron transfer dissociation of peptide anions , 2005, Journal of the American Society for Mass Spectrometry.

[61]  J. Shabanowitz,et al.  Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Jennifer N. Sutton,et al.  Low‐molecular‐weight human serum proteome using ultrafiltration, isoelectric focusing, and mass spectrometry , 2004, Electrophoresis.

[63]  R. Aebersold,et al.  A statistical model for identifying proteins by tandem mass spectrometry. , 2003, Analytical chemistry.

[64]  J. Yates,et al.  The application of mass spectrometry to membrane proteomics , 2003, Nature Biotechnology.

[65]  William S Hancock,et al.  Multiple enzymatic digestion for enhanced sequence coverage of proteins in complex proteomic mixtures using capillary LC with ion trap MS/MS. , 2003, Journal of proteome research.

[66]  S. Brenner,et al.  Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[67]  John I. Clark,et al.  Shotgun identification of protein modifications from protein complexes and lens tissue , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[68]  J. Yates,et al.  Large-scale analysis of the yeast proteome by multidimensional protein identification technology , 2001, Nature Biotechnology.

[69]  L. Hood,et al.  Internal amino acid sequence analysis of proteins separated by one- or two-dimensional gel electrophoresis after in situ protease digestion on nitrocellulose. , 1987, Proceedings of the National Academy of Sciences of the United States of America.