Combined constraints on global ocean primary production using observations and models

[1] Primary production is at the base of the marine food web and plays a central role for global biogeochemical cycles. Yet global ocean primary production is known to only a factor of ~2, with previous estimates ranging from 38 to 65 Pg C yr−1 and no formal uncertainty analysis. Here, we present an improved global ocean biogeochemistry model that includes a mechanistic representation of photosynthesis and a new observational database of net primary production (NPP) in the ocean. We combine the model and observations to constrain particulate NPP in the ocean with statistical metrics. The PlankTOM5.3 model includes a new photosynthesis formulation with a dynamic representation of iron-light colimitation, which leads to a considerable improvement of the interannual variability of surface chlorophyll. The database includes a consistent set of 50,050 measurements of 14C primary production. The model best reproduces observations when global NPP is 58 ± 7 Pg C yr−1, with a most probable value of 56 Pg C yr−1. The most probable value is robust to the model used. The uncertainty represents 95% confidence intervals. It considers all random errors in the model and observations, but not potential biases in the observations. We show that tropical regions (23°S–23°N) contribute half of the global NPP, while NPPs in the Northern and Southern Hemispheres are approximately equal in spite of the larger ocean area in the South.

[1]  Erik T. Buitenhuis,et al.  Blooms of Emiliania huxleyi are sinks of atmospheric carbon dioxide: A field and mesocosm study derived simulation , 2001 .

[2]  Y. Yamanaka,et al.  Interdecadal variation of the lower trophic ecosystem in the northern Pacific between 1948 and 2002, in a 3-D implementation of the NEMURO model , 2007 .

[3]  Laurent Bertino,et al.  Assessment and propagation of uncertainties in input terms through an ocean-color-based model of primary productivity , 2011 .

[4]  David Atkinson,et al.  Predicting marine phytoplankton maximum growth rates from temperature: Improving on the Eppley curve using quantile regression , 2008 .

[5]  G. Madec NEMO ocean engine , 2008 .

[6]  J. Nishioka,et al.  Development of a one‐dimensional ecosystem model including the iron cycle applied to the Oyashio region, western subarctic Pacific , 2012 .

[7]  D. J. Franklin,et al.  Growth rates of six coccolithophorid strains as a function of temperature , 2008 .

[8]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[9]  F. Mélin Potentiel de la télédétection pour l'analyse des propriétés optiques du système océan-atmosphère et application à l'estimation de la photosynthèse phytoplanctonique , 2003 .

[10]  B. Peterson,et al.  Particulate organic matter flux and planktonic new production in the deep ocean , 1979, Nature.

[11]  M. R. Droop,et al.  The nutrient status of algal cells in continuous culture , 1974, Journal of the Marine Biological Association of the United Kingdom.

[12]  E. Buitenhuis,et al.  Biogeochemical fluxes through microzooplankton , 2010 .

[13]  Michael R. Landry,et al.  Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems , 2004 .

[14]  W. Richard,et al.  TEMPERATURE AND PHYTOPLANKTON GROWTH IN THE SEA , 1972 .

[15]  David A. Siegel,et al.  Carbon‐based primary productivity modeling with vertically resolved photoacclimation , 2008 .

[16]  Daniele Iudicone,et al.  Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology , 2004 .

[17]  Corinne Le Quéré,et al.  Ocean biogeochemical response to phytoplankton‐light feedback in a global model , 2008 .

[18]  Reiner Schlitzer,et al.  Export Production in the Equatorial and North Pacific Derived from Dissolved Oxygen, Nutrient and Carbon Data , 2004 .

[19]  D. Berry,et al.  Statistics: Theory and Methods , 1990 .

[20]  E. Steemann Nielsen,et al.  The Use of Radio-active Carbon (C14) for Measuring Organic Production in the Sea , 1952 .

[21]  David A. Siegel,et al.  Carbon‐based ocean productivity and phytoplankton physiology from space , 2005 .

[22]  Peter A. Jumars,et al.  Transport and breakdown of fecal pellets: Biological and sedimentological consequences1 , 1984 .

[23]  T. Kana,et al.  Dynamic model of phytoplankton growth and acclimation: responses of the balanced growth rate and the chlorophyll a:carbon ratio to light, nutrient-limitation and temperature , 1997 .

[24]  J. Randerson,et al.  Primary production of the biosphere: integrating terrestrial and oceanic components , 1998, Science.

[25]  Casper Labuschagne,et al.  Saturation of the Southern Ocean CO2 Sink Due to Recent Climate Change , 2007, Science.

[26]  Elena Litchman,et al.  The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. , 2007, Ecology letters.

[27]  Kitack Lee Global net community production estimated from the annual cycle of surface water total dissolved inorganic carbon , 2001 .

[28]  A. Calbet Mesozooplankton grazing effect on primary production: A global comparative analysis in marine ecosystems , 2001 .

[29]  P. Falkowski,et al.  Photosynthetic rates derived from satellite‐based chlorophyll concentration , 1997 .

[30]  T. Donaldson Robustness of the F-Test to Errors of Both Kinds and the Correlation Between the Numerator and Denominator of the F-Ratio , 1968 .

[31]  T. Platt,et al.  An estimate of global primary production in the ocean from satellite radiometer data , 1995 .

[32]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[33]  Andrew J. Watson,et al.  Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models , 2005 .

[34]  Tsutomu Ikeda,et al.  Biogeochemical fluxes through mesozooplankton , 2006 .

[35]  W. Sunda,et al.  Iron uptake and growth limitation in oceanic and coastal phytoplankton , 1995 .

[36]  J. Marra Net and gross productivity: weighing in with 14C , 2009 .

[37]  D. Antoine,et al.  Oceanic primary production: 2. Estimation at global scale from satellite (Coastal Zone Color Scanner) chlorophyll , 1996 .

[38]  E. Buitenhuis,et al.  A model of phytoplankton acclimation to iron–light colimitation , 2010 .

[39]  Gurvan Madec,et al.  Salt conservation, free surface, and varying levels: A new formulation for ocean general circulation models , 2000 .

[40]  M. Lomas,et al.  Picoheterotroph ( Bacteria and Archaea ) biomass distribution in the global ocean , 2012 .

[41]  W. Whitman,et al.  Prokaryotes: the unseen majority. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[42]  T. Nagata Production mechanisms of dissolved organic matter , 2000 .

[43]  E. Buitenhuis,et al.  Production, oxygen respiration rates, and sinking velocity of copepod fecal pellets: Direct measurements of ballasting by opal and calcite , 2008 .

[44]  Michele Scardi,et al.  Assessing the Uncertainties of Model Estimates of Primary Productivity in the Tropical Pacific Ocean Revised , 2008 .

[45]  E. Buitenhuis,et al.  Potential impact of changes in river nutrient supply on global ocean biogeochemistry , 2007 .

[46]  Philippe Gaspar,et al.  A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: Tests at Station Papa and long-term upper ocean study site , 1990 .

[47]  Valérie Dulière,et al.  On the representation of high latitude processes in the ORCA-LIM global coupled sea ice–ocean model , 2005 .

[48]  Gordon A. Riley,et al.  Plankton Studies. II. The Western North Atlantic, May-June, 1939 , 1939 .

[49]  Michele Scardi,et al.  Challenges of modeling depth‐integrated marine primary productivity over multiple decades: A case study at BATS and HOT , 2010 .

[50]  P. Gent,et al.  Isopycnal mixing in ocean circulation models , 1990 .