Simulations and performance of the QUBIC optical beam combiner

QUBIC, the Q & U Bolometric Interferometer for Cosmology, is a novel ground-based instrument that aims to measure the extremely faint B-mode polarisation anisotropy of the cosmic microwave background at intermediate angular scales (multipoles of 𝑙 = 30 − 200). Primordial B-modes are a key prediction of Inflation as they can only be produced by gravitational waves in the very early universe. To achieve this goal, QUBIC will use bolometric interferometry, a technique that combines the sensitivity of an imager with the immunity to systematic effects of an interferometer. It will directly observe the sky through an array of back-to-back entry horns whose beams will be superimposed using a cooled quasioptical beam combiner. Images of the resulting interference fringes will be formed on two focal planes, each tiled with transition-edge sensors, cooled down to 320 mK. A dichroic filter placed between the optical combiner and the focal planes will select two frequency bands (centred at 150 GHz and 220 GHz), one frequency per focal plane. Polarization modulation will be achieved using a cold stepped half-wave plate (HWP) and polariser in front of the sky-facing horns. The full QUBIC instrument is described elsewhere1,2,3,4; in this paper we will concentrate in particular on simulations of the optical combiner (an off-axis Gregorian imager) and the feedhorn array. We model the optical performance of both the QUBIC full module and a scaled-down technological demonstrator which will be used to validate the full instrument design. Optical modelling is carried out using full vector physical optics with a combination of commercial and in-house software. In the high-frequency channel we must be careful to consider the higher-order modes that can be transmitted by the horn array. The instrument window function is used as a measure of performance and we investigate the effect of, for example, alignment and manufacturing tolerances, truncation by optical components and off-axis aberrations. We also report on laboratory tests carried on the QUBIC technological demonstrator in advance of deployment to the observing site in Argentina.

P. Ade | P. de Bernardis | S. Masi | L. Montier | F. Pajot | G. Pisano | C. Tucker | B. Bélier | M. Piat | E. Bréelle | D. Prêle | F. Voisin | M. C. Medina | M. Bersanelli | F. Columbro | C. Franceschet | L. Lamagna | C. O'Sullivan | M. Tristram | N. Vittorio | M. Zannoni | B. Maffei | M. Salatino | C. Chapron | S. Marnieros | D. Rambaud | S. A. Torchinsky | S. Henrot-Versillé | G. Amico | D. Auguste | J. Aumont | S. Banfi | G. Barbarán | P. Battaglia | E. Battistelli | A. Baù | D. Bennett | L. Bergé | J.-Ph. Bernard | M.-A. Bigot-Sazy | N. Bleurvacq | J. Bonaparte | J. Bonis | G. Bordier | E. Bunn | D. Burke | D. Buzi | A. Buzzelli | F. Cavaliere | P. Chanial | R. Charlassier | G. Coppi | A. Coppolecchia | F. Couchot | R. D'Agostino | G. D’Alessandro | G. De Gasperis | M. De Leo | M. De Petris | A. Di Donato | L. Dumoulin | A. Etchegoyen | A. Fasciszewski | M. M. Gamboa Lerena | B. García | X. Garrido | M. Gaspard | A. Gault | D. Gayer | M. Gervasi | M. Giard | Y. Giraud-Héraud | M. Gómez Berisso | M. González | M. Gradziel | L. Grandsire | E. Guerrard | D. Harari | V. Haynes | F. Incardona | E. Jules | A. Korotkov | C. Kristukat | S. Loucatos | T. Louis | A. Lowitz | V. Lukovic | R. Luterstein | L. Mele | S. Melhuish | A. Mennella | L. M. Mundo | J. A. Murphy | J. D. Murphy | E. Olivieri | A. Paiella | A. Passerini | H. Pastoriza | A. Pelosi | C. Perbost | O. Perdereau | F. Piacentini | L. Piccirillo | G. Polenta | R. Puddu | P. Ringegni | G. E. Romero | C. G. Scóccola | S. Spinelli | M. Stolpovskiy | F. Suarez | A. Tartari | P. Timbie | V. Truongcanh | G. Tucker | S. Vanneste | D. Viganò | B. Watson | F. Wicek | M. C. Medina | J.-Ch. Hamilton | J. Kaplan | A. Mattei | J.-P. Thermeau | S. Scully | A. May | M. McCulloch | A. Schillaci | A. Zullo | D. T. Hoang | F. Pezzotta | G. Tucker | P. Ade | S. Masi | F. Piacentini | A. Lowitz | C. Tucker | D. Viganò | P. Chanial | M. Gaspard | S. Henrot-Versillé | F. Wicek | F. Couchot | J. Bernard | M. Bersanelli | M. Giard | B. Maffei | A. Mennella | F. Pajot | O. Perdereau | M. Piat | G. Polenta | M. Tristram | N. Vittorio | Y. Giraud-Héraud | R. Puddu | G. Pisano | L. Mele | F. Columbro | G. Amico | E. Battistelli | A. Coppolecchia | L. Grandsire | J. Hamilton | L. Lamagna | S. Marnieros | C. O'sullivan | A. Paiella | A. Tartari | S. Torchinsky | F. Voisin | M. Zannoni | D. Auguste | J. Aumont | S. Banfi | D. Bennett | M. Bigot-Sazy | J. Bonaparte | J. Bonis | D. Burke | D. Buzi | F. Cavaliere | C. Chapron | R. Charlassier | L. Dumoulin | A. Etchegoyen | A. Fasciszewski | C. Franceschet | D. Gayer | M. Gervasi | M. Gradziel | D. Harari | F. Incardona | E. Jules | J. Kaplan | C. Kristukat | S. Loucatos | T. Louis | A. Mattei | A. May | M. McCulloch | L. Montier | L. Mundo | J. Murphy | E. Olivieri | A. Passerini | H. Pastoriza | A. Pelosi | C. Perbost | F. Pezzotta | L. Piccirillo | D. PRELE | D. Rambaud | P. Ringegni | A. Schillaci | S. Scully | S. Spinelli | M. Stolpovskiy | J. Thermeau | P. Timbie | A. Zullo | P. Battaglia | V. Haynes | M. Gómez Berisso | E. Breelle | S. Melhuish | A. Gault | M. Salatino | C. Scóccola | G. Coppi | A. di Donato | A. Buzzelli | F. Suarez | X. Garrido | B. Garcia | L. Bergé | B. Belier | A. Korotkov | B. Watson | R. D’Agostino | E. Bunn | M. De Petris | G. De Gasperis | G. Bordier | N. Bleurvacq | D. Hoang | M. De Leo | G. D’Alessandro | M. Gonzalez | V. Lukovic | S. Vanneste | A. Baù | G. Barbarán | R. Luterstein | E. Guerrard | V. Truongcanh | G. Romero | P. De Bernardis | J. Murphy

[1]  Creidhe O'Sullivan,et al.  Modelling of the optical performance of millimeter-wave instruments in MODAL , 2007, SPIE OPTO.

[2]  R. Charlassier,et al.  An efficient phase-shifting scheme for bolometric additive interferometry , 2008, Astronomy & Astrophysics.

[3]  J. Aumont,et al.  Optical design and modelling of the QUBIC instrument, a next-generation quasi-optical bolometric interferometer for cosmology , 2016, Astronomical Telescopes + Instrumentation.

[4]  P. Ade,et al.  QUBIC: the Q and U bolometric interferometer for cosmology , 2018, Astronomical Telescopes + Instrumentation.

[5]  S. Masi,et al.  QUBIC: The QU bolometric interferometer for cosmology , 2010, 1010.0645.

[6]  S. Masi,et al.  QUBIC - The Q&U Bolometric Interferometer for Cosmology - A novel way to look at the polarized Cosmic Microwave Background , 2017 .

[7]  P. de Bernardis,et al.  Optical modelling and analysis of the Q and U bolometric interferometer for cosmology , 2018, OPTO.

[8]  Y. Rahmat-Samii,et al.  Derivation and application of the equivalent paraboloid for classical offset Cassegrain and Gregorian antennas , 1990 .

[9]  David G. Bennett Design and analysis of a quasi-optical beam combiner for the QUBIC CMB interferometer , 2014 .

[10]  J. Murphy,et al.  Far-Infrared Optics Design & Verification , 2002 .

[11]  Peter A. R. Ade,et al.  Radiation patterns of multi-moded corrugated horns for far-IR space applications , 2001 .

[12]  Ieee Microwave Theory,et al.  Quasioptical systems : Gaussian beam quasioptical propagation and applications , 1998 .

[13]  C. O'Sullivan,et al.  FreeCAD visualization of realistic 3D physical optics beams within a CAD system-model , 2016, Astronomical Telescopes + Instrumentation.

[14]  U. Seljak,et al.  An all sky analysis of polarization in the microwave background , 1996, astro-ph/9609170.

[15]  M.-A. Bigot-Sazy,et al.  Self-calibration: an efficient method to control systematic effects in bolometric interferometry , 2012, 1209.4905.

[16]  S. Scully Quasi-Optical Design and Analysis of a Bolometric Interferometer for Cosmic Microwave Background Radiation Experiments , 2016 .