Hidden entanglement in the presence of random telegraph dephasing noise

Entanglement dynamics of two noninteracting qubits, locally affected by random telegraph noise at pure dephasing, exhibits revivals. These revivals are not due to the action of any nonlocal operation; thus their occurrence may appear paradoxical since entanglement is by definition a nonlocal resource. We show that a simple explanation of this phenomenon may be provided by using the (recently introduced) concept of hidden entanglement, which signals the presence of entanglement that may be recovered with the only help of local operations.

[1]  O. Cohen,et al.  Unlocking Hidden Entanglement with Classical Information , 1998 .

[2]  G. Falci,et al.  Superconducting qubit manipulated by fast pulses: experimental observation of distinct decoherence regimes , 2011, 1110.1508.

[3]  Wolf,et al.  Background charge noise in metallic single-electron tunneling devices. , 1996, Physical review. B, Condensed matter.

[4]  P. Joyez,et al.  Decoherence in a superconducting quantum bit circuit , 2005 .

[5]  Entanglement within the quantum trajectory description of open quantum systems. , 2004, Physical review letters.

[6]  B. Bellomo,et al.  Entanglement dynamics of two independent qubits in environments with and without memory , 2007, 0711.4799.

[7]  G. Falci,et al.  Decoherence times of universal two-qubit gates in the presence of broad-band noise , 2011, 1105.0333.

[8]  T Yamamoto,et al.  Charge echo in a cooper-pair box. , 2002, Physical review letters.

[9]  G. Falci,et al.  Initial decoherence in solid state qubits. , 2005, Physical review letters.

[10]  Dynamical suppression of telegraph and 1 ∕ f noise due to quantum bistable fluctuators , 2003, cond-mat/0312442.

[11]  Giuliano Benenti,et al.  Principles of Quantum Computation and Information:Volume II: Basic Tools and Special Topics , 2007 .

[12]  G. Falci,et al.  Purcell effect in a circuit-QED architecture implementation of a universal two-qubit gate , 2012 .

[13]  D. Cory,et al.  Noise spectroscopy through dynamical decoupling with a superconducting flux qubit , 2011 .

[14]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[15]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[16]  J. C. Retamal,et al.  Sudden birth versus sudden death of entanglement in multipartite systems. , 2008, Physical review letters.

[17]  Weiss,et al.  Exact master equations for driven dissipative tight-binding models. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  G. Falci,et al.  Effects of low-frequency noise in driven coherent nanodevices , 2012 .

[19]  S. Maniscalco,et al.  DYNAMICS OF QUANTUM CORRELATIONS IN TWO-QUBIT SYSTEMS WITHIN NON-MARKOVIAN ENVIRONMENTS , 2012, 1205.6419.

[20]  J. C. Retamal,et al.  Dynamics of entanglement transfer through multipartite dissipative systems , 2010, 1007.1951.

[21]  M. Weissman 1/f noise and other slow, nonexponential kinetics in condensed matter. , 1988 .

[22]  Giuseppe Compagno,et al.  Entanglement dynamics in superconducting qubits affected by local bistable impurities , 2012, 1408.6887.

[23]  T. Duty,et al.  Charge noise in single-electron transistors and charge qubits may be caused by metallic grains , 2008, 0807.2751.

[24]  Optimal operating conditions of an entangling two-transmon gate , 2011, 1110.0379.

[25]  Bruno O. Shubert,et al.  Random variables and stochastic processes , 1979 .

[26]  G. Compagno,et al.  Non-markovian effects on the dynamics of entanglement. , 2007, Physical review letters.

[27]  A. Buchleitner,et al.  Optimal dynamical characterization of entanglement. , 2007, Physical review letters.

[28]  B L Altshuler,et al.  Non-Gaussian low-frequency noise as a source of qubit decoherence. , 2005, Physical review letters.

[29]  J. Cirac,et al.  Entanglement cost of bipartite mixed states. , 2001, Physical Review Letters.

[30]  Ming-Yong Ye,et al.  Entanglement monogamy and entanglement evolution in multipartite systems , 2009 .

[31]  G. Falci,et al.  Recovering entanglement by local operations , 2012, 1207.3294.

[32]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[33]  Dong Zhou,et al.  Disentanglement and decoherence from classical non-Markovian noise: random telegraph noise , 2009, Quantum Inf. Process..

[34]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[35]  Raymond Kapral,et al.  Quantum dynamics in open quantum-classical systems , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[36]  Erika Andersson,et al.  Revival of quantum correlations without system-environment back-action , 2010, 1009.5710.

[37]  Rosario Fazio,et al.  Decoherence and 1/f noise in Josephson qubits. , 2002, Physical review letters.

[38]  H. Carmichael An open systems approach to quantum optics , 1993 .

[39]  G. Falci,et al.  Broadband noise decoherence in solid-state complex architectures , 2009, 1001.4736.