An efficient and stable Newton-type iterative method for computing generalized inverse AT,S(2)$A_{T,S}^{(2)}$

A Newton-type iterative method for finding the outer inverse AT,S(2)$A_{T,S}^{(2)}$ of an arbitrary matrix is presented. It is analyzed that the scheme has asymptotic stability and possesses a higher computational efficiency index in contrast to the existing methods. This higher efficiency index is new and interesting in both theoretical and practical viewpoints. Moreover, theoretical results concerning order of convergence and computational efficiency are re-verified in examples.

[1]  Yimin Wei,et al.  Inverse Order Rule for Weighted Generalized Inverse , 1998 .

[2]  Adi Ben-Israel,et al.  Generalized inverses: theory and applications , 1974 .

[3]  K. Tanabe Neumann-type expansion of reflexive generalized inverses of a matrix and the hyperpower iterative method , 1975 .

[4]  Xiaoji Liu,et al.  Higher-order convergent iterative method for computing the generalized inverse and its application to Toeplitz matrices , 2013 .

[5]  W. Mönch Anwendung des Schulz‐Verfahrens zur Nachkorrektur einer näherungsweise berechneten verallgemeinerten Inversen einer Matrix , 1981 .

[6]  N. Higham Functions of Matrices: Theory and Computation (Other Titles in Applied Mathematics) , 2008 .

[7]  Xingping Sheng An iterative algorithm to compute the Bott-Duffin inverse and generalized Bott-Duffin inverse , 2012 .

[8]  Predrag S. Stanimirovic,et al.  A class of numerical algorithms for computing outer inverses , 2014, J. Comput. Appl. Math..

[9]  Eugene E. Tyrtyshnikov,et al.  Superfast solution of linear convolutional Volterra equations using QTT approximation , 2014, J. Comput. Appl. Math..

[10]  H. T. Kung,et al.  Optimal Order of One-Point and Multipoint Iteration , 1974, JACM.

[11]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[12]  Liu Weiguo,et al.  A family of iterative methods for computing Moore–Penrose inverse of a matrix , 2013 .

[13]  Mario Bebendorf,et al.  Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems , 2008 .

[14]  G. Schulz Iterative Berechung der reziproken Matrix , 1933 .

[15]  Victor Y. Pan,et al.  An Improved Newton Iteration for the Generalized Inverse of a Matrix, with Applications , 1991, SIAM J. Sci. Comput..

[16]  Michael Trott The Mathematica GuideBook for Numerics , 2005 .