An efficient and stable Newton-type iterative method for computing generalized inverse AT,S(2)$A_{T,S}^{(2)}$
暂无分享,去创建一个
[1] Yimin Wei,et al. Inverse Order Rule for Weighted Generalized Inverse , 1998 .
[2] Adi Ben-Israel,et al. Generalized inverses: theory and applications , 1974 .
[3] K. Tanabe. Neumann-type expansion of reflexive generalized inverses of a matrix and the hyperpower iterative method , 1975 .
[4] Xiaoji Liu,et al. Higher-order convergent iterative method for computing the generalized inverse and its application to Toeplitz matrices , 2013 .
[5] W. Mönch. Anwendung des Schulz‐Verfahrens zur Nachkorrektur einer näherungsweise berechneten verallgemeinerten Inversen einer Matrix , 1981 .
[6] N. Higham. Functions of Matrices: Theory and Computation (Other Titles in Applied Mathematics) , 2008 .
[7] Xingping Sheng. An iterative algorithm to compute the Bott-Duffin inverse and generalized Bott-Duffin inverse , 2012 .
[8] Predrag S. Stanimirovic,et al. A class of numerical algorithms for computing outer inverses , 2014, J. Comput. Appl. Math..
[9] Eugene E. Tyrtyshnikov,et al. Superfast solution of linear convolutional Volterra equations using QTT approximation , 2014, J. Comput. Appl. Math..
[10] H. T. Kung,et al. Optimal Order of One-Point and Multipoint Iteration , 1974, JACM.
[11] Nicholas J. Higham,et al. Functions of matrices - theory and computation , 2008 .
[12] Liu Weiguo,et al. A family of iterative methods for computing Moore–Penrose inverse of a matrix , 2013 .
[13] Mario Bebendorf,et al. Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems , 2008 .
[14] G. Schulz. Iterative Berechung der reziproken Matrix , 1933 .
[15] Victor Y. Pan,et al. An Improved Newton Iteration for the Generalized Inverse of a Matrix, with Applications , 1991, SIAM J. Sci. Comput..
[16] Michael Trott. The Mathematica GuideBook for Numerics , 2005 .