A GENERALIZED CLASS OF EXPONENTIATED MODI ED WEIBULL DISTRIBUTION WITH APPLICATIONS

In this paper, a new class of five parameter gamma-exponentiated or generalized modified Weibull (GEMW) distribution which includes exponential, Rayleigh, Weibull, modified Weibull, exponentiated Weibull, exponentiated exponential, exponentiated modified Weibull, exponentiated modified exponential, gamma-exponentiated exponential, gammaexponentiated Rayleigh, gamma-modified Weibull, gamma-modified exponential, gamma-Weibull, gamma-Rayleigh and gamma-exponential distributions as special cases is proposed and studied. Mathematical properties of this new class of distributions including moments, mean deviations, Bonferroni and Lorenz curves, distribution of order statistics and Renyi entropy are presented. Maximum likelihood estimation technique is used to estimate the model parameters and applications to real data sets presented in order to illustrate the usefulness of this new class of distributions and its sub-models.

[1]  Gauss M. Cordeiro,et al.  Computational Statistics and Data Analysis a Generalized Modified Weibull Distribution for Lifetime Modeling , 2022 .

[2]  Gauss M. Cordeiro,et al.  The Weibull-G Family of Probability Distributions , 2014, Journal of Data Science.

[3]  Hendrik Schäbe,et al.  A new model for a lifetime distribution with bathtub shaped failure rate , 1992 .

[4]  J. Mi,et al.  On the Existence and Uniqueness of the Maximum Likelihood Estimators of Normal and Lognormal Population Parameters with Grouped Data , 2009 .

[5]  Hoang Pham,et al.  On Recent Generalizations of the Weibull Distribution , 2007, IEEE Transactions on Reliability.

[6]  Eric P. Smith,et al.  An Introduction to Statistical Modeling of Extreme Values , 2002, Technometrics.

[7]  Faton Merovci,et al.  A New Generalized of Exponentiated Modified Weibull Distribution , 2021 .

[8]  D. N. Prabhakar Murthy,et al.  A modified Weibull distribution , 2003, IEEE Trans. Reliab..

[9]  Silvana Tenreyro,et al.  On the existence of the maximum likelihood estimates for Poisson regression , 2010 .

[10]  W. Weibull A Statistical Distribution Function of Wide Applicability , 1951 .

[11]  Chen Zhou,et al.  Existence and consistency of the maximum likelihood estimator for the extreme value index , 2009, J. Multivar. Anal..

[12]  Gauss M. Cordeiro,et al.  The beta modified Weibull distribution , 2010, Lifetime data analysis.

[13]  D. Kundu,et al.  Theory & Methods: Generalized exponential distributions , 1999 .

[14]  Debasis Kundu,et al.  Generalized Rayleigh distribution: different methods of estimations , 2005, Comput. Stat. Data Anal..

[15]  Saralees Nadarajah,et al.  General results for the beta-modified Weibull distribution , 2011 .

[16]  S. Coles,et al.  An Introduction to Statistical Modeling of Extreme Values , 2001 .

[17]  F. Famoye,et al.  BETA-NORMAL DISTRIBUTION AND ITS APPLICATIONS , 2002 .

[18]  T. Ferguson A Course in Large Sample Theory , 1996 .

[19]  J. Crank Tables of Integrals , 1962 .

[20]  M. C. Jones Families of distributions arising from distributions of order statistics , 2004 .

[21]  Samuel Kotz,et al.  The beta exponential distribution , 2006, Reliab. Eng. Syst. Saf..

[22]  W. Nelson Statistical Methods for Reliability Data , 1998 .

[23]  G. Cordeiro,et al.  The Gamma-Exponentiated Weibull Distribution , 2012 .

[24]  M. B. Rajarshi,et al.  Bathtub distributions: a review , 1988 .

[25]  A. Seregin,et al.  Uniqueness of the maximum likelihood estimator for $k$-monotone densities , 2010, 1001.1782.

[26]  Narayanaswamy Balakrishnan,et al.  On families of beta- and generalized gamma-generated distributions and associated inference , 2009 .

[27]  Magne Vollan Aarset,et al.  How to Identify a Bathtub Hazard Rate , 1987, IEEE Transactions on Reliability.

[28]  N. Balakrishnan,et al.  The gamma-exponentiated exponential distribution , 2012 .

[29]  D. F. Hays,et al.  Table of Integrals, Series, and Products , 1966 .