A Model for Predicting the Future Incidence of Coronary Heart Disease Within Percentiles of Coronary Heart Disease Risk

Background We present a method (The CHD Prevention Model) for modelling the incidence of fatal and nonfatal coronary heart disease (CHD) within various CHD risk percentiles of an adult population. The model provides a relatively simple tool for lifetime risk prediction for subgroups within a population. It allows an estimation of the absolute primary CHD risk in different populations and will help identify subgroups of the adult population where primary CHD prevention is most appropriate and cost-effective. Methods The CHD risk distribution within the Australian population was modelled, based on the prevalence of CHD risk, individual estimates of integrated CHD risk, and current CHD mortality rates. Predicted incidence of first fatal and nonfatal myocardial infarction within CHD risk strata of the Australian population was determined. Results Approximately 25% of CHD deaths were predicted to occur amongst those in the top 10 percentiles of integrated CHD risk, regardless of age group or gender. It was found that while all causes survival did not differ markedly between percentiles of CHD risk before the ages of around 50-60, event-free survival began visibly to differ about 5 years earlier. Conclusions The CHD Prevention Model provides a means of predicting future CHD incidence amongst various strata of integrated CHD risk within an adult population. It has significant application both in individual risk counselling and in the identification of subgroups of the population where drug therapy to reduce CHD risk is most cost-effective.

[1]  S B Hulley,et al.  Overall and coronary heart disease mortality rates in relation to major risk factors in 325,348 men screened for the MRFIT. Multiple Risk Factor Intervention Trial. , 1986, American heart journal.

[2]  C. Reid,et al.  Cardiovascular Risk Reduction: A Randomized Trial of Two Health Promotion Strategies for Lowering Risk in a Community with Low Socioeconomic Status , 1995, Journal of cardiovascular risk.

[3]  A. Gotto,et al.  Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study. , 1998, JAMA.

[4]  A. Dobson,et al.  The accuracy of hospital records and death certificates for acute myocardial infarction. , 1995, Australian and New Zealand journal of medicine.

[5]  W. Kannel,et al.  Representativeness of the Framingham risk model for coronary heart disease mortality: a comparison with a national cohort study. , 1987, Journal of chronic diseases.

[6]  Ames,et al.  PREVENTION OF CORONARY HEART DISEASE WITH PRAVASTATIN IN MEN WITH HYPERCHOLESTEROLEMIA , 2000 .

[7]  Martin G. Larson,et al.  Long-Term Epidemiologic Prediction of Coronary Disease , 1993 .

[8]  H. Tunstall-Pedoe,et al.  Myocardial Infarction and Coronary Deaths in the World Health Organization MONICA Project: Registration Procedures, Event Rates, and Case‐Fatality Rates in 38 Populations From 21 Countries in Four Continents , 1994, Circulation.