Solving Systems of Linear Diophantine Equations: An Algebraic Approach

We describe through an algebraic and geometrical study, a new method for solving systems of linear diophantine equations. This approach yields an algorithm which is intrinsically parallel. In addition to the algorithm, we give a geometrical interpretation of the satisfiability of an homogeneous system, as well as upper bounds on height and length of all minimal solutions of such a system. We also show how our results apply to inhomogeneous systems yielding necessary conditions for satisfiability and upper bounds on the minimal solutions.