Feedback Vertex Set in Mixed Graphs

A mixed graph is a graph with both directed and undirected edges. We present an algorithm for deciding whether a given mixed graph on n vertices contains a feedback vertex set (FVS) of size at most k, in time O(47.5k ċ k! ċ n4). This is the first fixed parameter tractable algorithm for FVS that applies to both directed and undirected graphs.

[1]  Saket Saurabh,et al.  Faster Fixed Parameter Tractable Algorithms for Undirected Feedback Vertex Set , 2002, ISAAC.

[2]  Dimitrios M. Thilikos,et al.  Invitation to fixed-parameter algorithms , 2007, Comput. Sci. Rev..

[3]  Prof. Dr. Kurt Mehlhorn,et al.  Data Structures and Algorithms 2 , 1984, EATCS Monographs on Theoretical Computer Science.

[4]  Dimitrios M. Thilikos,et al.  (Meta) Kernelization , 2009, FOCS.

[5]  Mohammad Taghi Hajiaghayi,et al.  The Generalized Deadlock Resolution Problem , 2005, ICALP.

[6]  Fedor V. Fomin,et al.  Finding Induced Subgraphs via Minimal Triangulations , 2009, STACS.

[7]  Stéphan Thomassé,et al.  A 4k2 kernel for feedback vertex set , 2010, TALG.

[8]  Kurt Mehlhorn,et al.  Data Structures and Algorithms 2: Graph Algorithms and NP-Completeness , 1984, EATCS Monographs on Theoretical Computer Science.

[9]  Stéphan Thomassé A quadratic kernel for feedback vertex set , 2009, SODA.

[10]  Fedor V. Fomin,et al.  Finding a Minimum Feedback Vertex Set in Time O (1.7548n) , 2006, IWPEC.

[11]  Fedor V. Fomin,et al.  On the Minimum Feedback Vertex Set Problem: Exact and Enumeration Algorithms , 2008, Algorithmica.

[12]  Michael R. Fellows,et al.  FIXED-PARAMETER TRACTABILITY AND COMPLETENESS , 2022 .

[13]  Michael J. Pelsmajer,et al.  Parameterized Algorithms for Feedback Vertex Set , 2004, IWPEC.

[14]  Piotr Berman,et al.  A 2-Approximation Algorithm for the Undirected Feedback Vertex Set Problem , 1999, SIAM J. Discret. Math..

[15]  Jörg Flum,et al.  Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .

[16]  Rolf Niedermeier,et al.  Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartization , 2006, J. Comput. Syst. Sci..

[17]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[18]  Michael R. Fellows,et al.  An O(2O(k)n3) FPT Algorithm for the Undirected Feedback Vertex Set Problem , 2005, COCOON.

[19]  Hans L. Bodlaender,et al.  On Disjoint Cycles , 1991, Int. J. Found. Comput. Sci..

[20]  Kurt Mehlhorn,et al.  Graph Algorithm and NP-Completeness , 1984 .

[21]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[22]  Panos M. Pardalos,et al.  Feedback Set Problems , 2009, Encyclopedia of Optimization.

[23]  Igor Razgon,et al.  Computing Minimum Directed Feedback Vertex Set in O(1.9977n) , 2007, ICTCS.

[24]  Barry O'Sullivan,et al.  A fixed-parameter algorithm for the directed feedback vertex set problem , 2008, JACM.

[26]  Saket Saurabh,et al.  Faster fixed parameter tractable algorithms for finding feedback vertex sets , 2006, TALG.

[27]  Dan Geiger,et al.  Optimization of Pearl's Method of Conditioning and Greedy-Like Approximation Algorithms for the Vertex Feedback Set Problem , 1996, Artif. Intell..

[28]  Jianer Chen,et al.  Improved algorithms for feedback vertex set problems , 2007, J. Comput. Syst. Sci..

[29]  Bruce A. Reed,et al.  Finding odd cycle transversals , 2004, Oper. Res. Lett..

[30]  Jianer Chen,et al.  On Feedback Vertex Set New Measure and New Structures , 2010, SWAT.

[31]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[32]  BafnaVineet,et al.  A 2-Approximation Algorithm for the Undirected Feedback Vertex Set Problem , 1999 .

[33]  Sergey Yekhanin,et al.  Towards 3-query locally decodable codes of subexponential length , 2008, JACM.

[34]  Joseph Naor,et al.  Approximating Minimum Feedback Sets and Multicuts in Directed Graphs , 1998, Algorithmica.