Tackling the Challenge of Emotion Annotation in Text

[1]  M. Marelli,et al.  SemEval-2014 Task 1: Evaluation of Compositional Distributional Semantic Models on Full Sentences through Semantic Relatedness and Textual Entailment , 2014, *SEMEVAL.

[2]  Pearl Pu,et al.  Dystemo: Distant Supervision Method for Multi-Category Emotion Recognition in Tweets , 2016, ACM Trans. Intell. Syst. Technol..

[3]  C. Izard The face of emotion , 1971 .

[4]  J. Mikels,et al.  Characterization of the Affective Norms for English Words by discrete emotional categories , 2007, Behavior research methods.

[5]  Cynthia Whissell,et al.  THE DICTIONARY OF AFFECT IN LANGUAGE , 1989 .

[6]  Aitor García Pablos,et al.  Unsupervised Word Polarity Tagging by Exploiting Continuous Word Representations , 2015, Proces. del Leng. Natural.

[7]  Diana Inkpen,et al.  Using a Heterogeneous Dataset for Emotion Analysis in Text , 2011, Canadian Conference on AI.

[8]  Jeffrey Dean,et al.  Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.

[9]  Ameet Talwalkar,et al.  Foundations of Machine Learning , 2012, Adaptive computation and machine learning.

[10]  Marco Guerini,et al.  Depeche Mood: a Lexicon for Emotion Analysis from Crowd Annotated News , 2014, ACL.

[11]  Erkki Sutinen,et al.  EmotionExpert: Facebook game for crowdsourcing annotations for emotion detection , 2013, 2013 IEEE International Games Innovation Conference (IGIC).

[12]  Kamil K. Imbir,et al.  Affective norms for 1,586 polish words (ANPW): Duality-of-mind approach , 2014, Behavior research methods.

[13]  R. Levenson,et al.  Autonomic specificity and emotion. , 2003 .

[14]  Vajrapu Anusha,et al.  A Learning Based Emotion Classifier with Semantic Text Processing , 2014, ISI.

[15]  Beatrice Santorini,et al.  Building a Large Annotated Corpus of English: The Penn Treebank , 1993, CL.

[16]  Louise Deléger,et al.  Evaluating the impact of pre-annotation on annotation speed and potential bias: natural language processing gold standard development for clinical named entity recognition in clinical trial announcements , 2013, J. Am. Medical Informatics Assoc..

[17]  Saima Aman,et al.  Recognizing Emotions in Text , 2007 .

[18]  Jasy Liew Suet Yan Discovering Emotions in the Wild: An Inductive Method to Identify Fine-grained Emotion Categories in Tweets. , 2015, FLAIRS 2015.

[19]  Stan Szpakowicz,et al.  Hierarchical versus Flat Classification of Emotions in Text , 2010, HLT-NAACL 2010.

[20]  Saif Mohammad,et al.  Portable Features for Classifying Emotional Text , 2012, NAACL.

[21]  John C. Platt Using Analytic QP and Sparseness to Speed Training of Support Vector Machines , 1998, NIPS.

[22]  Ellen Riloff,et al.  Learning subjective nouns using extraction pattern bootstrapping , 2003, CoNLL.

[23]  Erik Cambria,et al.  AffectiveSpace 2: Enabling Affective Intuition for Concept-Level Sentiment Analysis , 2015, AAAI.

[24]  Klaus Krippendorff,et al.  Content Analysis: An Introduction to Its Methodology , 1980 .

[25]  A. Ortony,et al.  What's basic about basic emotions? , 1990, Psychological review.

[26]  Jarkko Suhonen,et al.  Emotion analysis meets learning analytics: online learner profiling beyond numerical data , 2014, Koli Calling.

[27]  Véronique Hoste,et al.  Emotion detection in suicide notes , 2013, Expert Syst. Appl..

[28]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[29]  Alistair Kennedy,et al.  SENTIMENT CLASSIFICATION of MOVIE REVIEWS USING CONTEXTUAL VALENCE SHIFTERS , 2006, Comput. Intell..

[30]  Carlo Strapparava,et al.  WordNet Affect: an Affective Extension of WordNet , 2004, LREC.

[31]  J. Fleiss Measuring nominal scale agreement among many raters. , 1971 .

[32]  Yoram Singer,et al.  Unsupervised Models for Named Entity Classification , 1999, EMNLP.

[33]  Jean-Yves Antoine,et al.  Weighted Krippendorff’s alpha is a more reliable metrics for multi-coders ordinal annotations: experimental studies on emotion, opinion and coreference annotation , 2014, EACL.

[34]  Carlo Strapparava,et al.  SemEval-2007 Task 14: Affective Text , 2007, Fourth International Workshop on Semantic Evaluations (SemEval-2007).

[35]  Sophie Rosset,et al.  Modeling the Complexity of Manual Annotation Tasks: a Grid of Analysis , 2012, COLING.

[36]  Carlo Strapparava,et al.  Emotions and NLP: Future Directions , 2016, WASSA@NAACL-HLT.

[37]  Elizabeth D. Liddy,et al.  EmoTweet-28: A Fine-Grained Emotion Corpus for Sentiment Analysis , 2016, LREC.

[38]  Mitsuru Ishizuka,et al.  @AM: Textual Attitude Analysis Model , 2010, HLT-NAACL 2010.

[39]  Elke A. Rundensteiner,et al.  EMOTEX: Detecting Emotions in Twitter Messages , 2014 .

[40]  R. Plutchik The psychology and biology of emotion , 1994 .

[41]  Vladan Devedzic,et al.  Synesketch: An Open Source Library for Sentence-Based Emotion Recognition , 2013, IEEE Transactions on Affective Computing.

[42]  J. Russell A circumplex model of affect. , 1980 .

[43]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[44]  Daniel Jurafsky,et al.  Distant supervision for relation extraction without labeled data , 2009, ACL.

[45]  Carlo Strapparava,et al.  Semantic Domains in Computational Linguistics , 2009 .

[46]  Christine A. Lindberg,et al.  Oxford American Writer's Thesaurus , 2012 .

[47]  Andrew McCallum,et al.  Text Classification by Bootstrapping with Keywords, EM and Shrinkage , 1999 .

[48]  Stefan Evert,et al.  A Large Scale Evaluation of Distributional Semantic Models: Parameters, Interactions and Model Selection , 2014, TACL.

[49]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[50]  Dolf Trieschnigg,et al.  Improving Cyberbullying Detection with User Context , 2013, ECIR.

[51]  P. Ekman An argument for basic emotions , 1992 .

[52]  Erik Cambria,et al.  SenticNet 3: A Common and Common-Sense Knowledge Base for Cognition-Driven Sentiment Analysis , 2014, AAAI.

[53]  Sanda M. Harabagiu,et al.  EmpaTweet: Annotating and Detecting Emotions on Twitter , 2012, LREC.

[54]  Kuzman Ganchev,et al.  Semi-Automated Named Entity Annotation , 2007, LAW@ACL.

[55]  G. Mishne Experiments with Mood Classification in , 2005 .

[56]  Udo Hahn,et al.  EmoBank: Studying the Impact of Annotation Perspective and Representation Format on Dimensional Emotion Analysis , 2017, EACL.

[57]  R. Plutchik A GENERAL PSYCHOEVOLUTIONARY THEORY OF EMOTION , 1980 .

[58]  Pascal Denis,et al.  Coupling an Annotated Corpus and a Morphosyntactic Lexicon for State-of-the-Art POS Tagging with Less Human Effort , 2009, PACLIC.

[59]  W. G. Parrott,et al.  Emotions in social psychology : essential readings , 2001 .

[60]  E. Vesterinen,et al.  Affective Computing , 2009, Encyclopedia of Biometrics.

[61]  Elena Paslaru Bontas Simperl,et al.  Using microtasks to crowdsource DBpedia entity classification: A study in workflow design , 2018, Semantic Web.

[62]  Jacob Cohen A Coefficient of Agreement for Nominal Scales , 1960 .

[63]  Jonathon Read,et al.  Using Emoticons to Reduce Dependency in Machine Learning Techniques for Sentiment Classification , 2005, ACL.

[64]  Saif Mohammad,et al.  #Emotional Tweets , 2012, *SEMEVAL.

[65]  Amit P. Sheth,et al.  Harnessing Twitter "Big Data" for Automatic Emotion Identification , 2012, 2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing.

[66]  Andreas Kerren,et al.  PAL, a tool for Pre-annotation and Active Learning , 2016, J. Lang. Technol. Comput. Linguistics.

[67]  Ellen Riloff,et al.  Bootstrapped Learning of Emotion Hashtags #hashtags4you , 2013, WASSA@NAACL-HLT.

[68]  Marc Brysbaert,et al.  Moving beyond Kučera and Francis: A critical evaluation of current word frequency norms and the introduction of a new and improved word frequency measure for American English , 2009, Behavior research methods.

[69]  Jon Oberlander,et al.  Weblogs, genres and individual differences , 2005 .

[70]  Saif Mohammad,et al.  CROWDSOURCING A WORD–EMOTION ASSOCIATION LEXICON , 2013, Comput. Intell..

[71]  Amy Beth Warriner,et al.  Norms of valence, arousal, and dominance for 13,915 English lemmas , 2013, Behavior Research Methods.

[72]  Youngjoong Ko,et al.  Learning with Unlabeled Data for Text Categorization Using a Bootstrapping and a Feature Projection Technique , 2004, ACL.

[73]  R. Jakobson Linguistics and poetics , 1960 .

[74]  Maria Kvist,et al.  Identifying adverse drug event information in clinical notes with distributional semantic representations of context , 2015, J. Biomed. Informatics.

[75]  P. Lang International affective picture system (IAPS) : affective ratings of pictures and instruction manual , 2005 .

[76]  T. Graepel,et al.  Private traits and attributes are predictable from digital records of human behavior , 2013, Proceedings of the National Academy of Sciences.

[77]  Josef Ruppenhofer,et al.  Assessing the benefits of partial automatic pre-labeling for frame-semantic annotation , 2009, Linguistic Annotation Workshop.

[78]  Fazel Keshtkar,et al.  A Corpus-based Method for Extracting Paraphrases of Emotion Terms , 2010, HLT-NAACL 2010.

[79]  James W. Pennebaker,et al.  Linguistic Inquiry and Word Count (LIWC2007) , 2007 .

[80]  David Watson,et al.  The PANAS-X manual for the positive and negative affect schedule , 1994 .

[81]  Youngjoong Ko,et al.  Using the feature projection technique based on a normalized voting method for text classification , 2004, Inf. Process. Manag..

[82]  P. Shaver,et al.  Emotion knowledge: further exploration of a prototype approach. , 1987, Journal of personality and social psychology.

[83]  Dipankar Das,et al.  Enhanced SenticNet with Affective Labels for Concept-Based Opinion Mining , 2013, IEEE Intelligent Systems.

[84]  P. Ekman Universals and cultural differences in facial expressions of emotion. , 1972 .

[85]  Yunfei Long,et al.  Emotion Corpus Construction Based on Selection from Hashtags , 2016, LREC.

[86]  P. Young,et al.  Emotion and personality , 1963 .

[87]  Koby Crammer,et al.  Online Passive-Aggressive Algorithms , 2003, J. Mach. Learn. Res..

[88]  Andreas M. Kaplan,et al.  The early bird catches the news: Nine things you should know about micro-blogging , 2011 .

[89]  Stefan Trausan-Matu,et al.  Trust and user profiling for refining the prediction of reader's emotional state induced by news articles , 2014, 2014 RoEduNet Conference 13th Edition: Networking in Education and Research Joint Event RENAM 8th Conference.

[90]  Dong Yu,et al.  Deep Learning: Methods and Applications , 2014, Found. Trends Signal Process..

[91]  Carlo Strapparava,et al.  Affect Detection in Texts , 2015 .

[92]  Stan Szpakowicz,et al.  Identifying Expressions of Emotion in Text , 2007, TSD.

[93]  Nancy Ide,et al.  Distant Supervision for Emotion Classification with Discrete Binary Values , 2013, CICLing.

[94]  D. Ghazi Identifying Expressions of Emotions and Their Stimuli in Text , 2016 .

[95]  Frederik Vaassen,et al.  Measuring emotion : exploring the feasibility of automatically classifying emotional text , 2014 .

[96]  Hinrich Schütze,et al.  Ultradense Word Embeddings by Orthogonal Transformation , 2016, NAACL.

[97]  K. Scherer What are emotions? And how can they be measured? , 2005 .

[98]  Munmun De Choudhury,et al.  Happy, Nervous or Surprised? Classification of Human Affective States in Social Media , 2012, ICWSM.

[99]  Carlo Strapparava,et al.  Improving text categorization bootstrapping via unsupervised learning , 2009, TSLP.

[100]  Cecilia Ovesdotter Alm,et al.  Emotions from Text: Machine Learning for Text-based Emotion Prediction , 2005, HLT.

[101]  Brendan T. O'Connor,et al.  Cheap and Fast – But is it Good? Evaluating Non-Expert Annotations for Natural Language Tasks , 2008, EMNLP.

[102]  Katherine A. Rawson,et al.  Category Norms: An Updated and Expanded Version of the Battig and Montague (1969) Norms. , 2004 .

[103]  Mihai Surdeanu,et al.  The Stanford CoreNLP Natural Language Processing Toolkit , 2014, ACL.

[104]  Daniel Gildea,et al.  The Proposition Bank: An Annotated Corpus of Semantic Roles , 2005, CL.

[105]  V. Sharmila,et al.  Using Hashtags to Capture Fine Emotion Categories from Tweets , 2019 .

[106]  C. Darwin,et al.  The Expression of the Emotions in Man and Animals , 1872 .

[107]  Philip S. Yu,et al.  Text Classification by Labeling Words , 2004, AAAI.

[108]  K. Imbir Affective Norms for 718 Polish Short Texts (ANPST): Dataset with Affective Ratings for Valence, Arousal, Dominance, Origin, Subjective Significance and Source Dimensions , 2016, Front. Psychol..

[109]  Mitsuru Ishizuka,et al.  Affect Analysis Model: novel rule-based approach to affect sensing from text , 2010, Natural Language Engineering.

[110]  Maria Kvist,et al.  Automatic recognition of disorders, findings, pharmaceuticals and body structures from clinical text: An annotation and machine learning study , 2014, J. Biomed. Informatics.

[111]  A. Mehrabian Pleasure-arousal-dominance: A general framework for describing and measuring individual differences in Temperament , 1996 .

[112]  Colin Cherry,et al.  Binary Classifiers and Latent Sequence Models for Emotion Detection in Suicide Notes , 2012, Biomedical informatics insights.

[113]  Georgiana Dinu,et al.  Improving zero-shot learning by mitigating the hubness problem , 2014, ICLR.

[114]  K. Scherer,et al.  How universal and specific is emotional experience? Evidence from 27 countries on five continents , 1986 .

[115]  Andrew Ortony,et al.  The Cognitive Structure of Emotions , 1988 .

[116]  M. de Rijke,et al.  Short Text Similarity with Word Embeddings , 2015, CIKM.

[117]  Michel Généreux,et al.  Distinguishing affective states in weblogs , 2006, AAAI 2006.

[118]  Diana Inkpen,et al.  Natural Language Processing for Social Media , 2015, Natural Language Processing for Social Media.

[119]  J. Stainer,et al.  The Emotions , 1922, Nature.

[120]  Li Li,et al.  Learning Semantic Similarity for Multi-label Text Categorization , 2014, CLSW.

[121]  Stan Szpakowicz,et al.  Using Roget’s Thesaurus for Fine-grained Emotion Recognition , 2008, IJCNLP.

[122]  K. Pearson Early statistical papers , 1948 .

[123]  Benoît Sagot,et al.  Influence of Pre-Annotation on POS-Tagged Corpus Development , 2010, Linguistic Annotation Workshop.

[124]  Walter Daelemans,et al.  Towards the Improvement of Automatic Emotion Pre-annotation with Polarity and Subjective Information , 2017, RANLP.

[125]  David Yarowsky,et al.  Unsupervised Word Sense Disambiguation Rivaling Supervised Methods , 1995, ACL.

[126]  Carlo Strapparava,et al.  Lyrics, Music, and Emotions , 2012, EMNLP.

[127]  Claudiu Cristian Musat,et al.  Fine-Grained Emotion Recognition in Olympic Tweets Based on Human Computation , 2013, WASSA@NAACL-HLT.

[128]  Lung-Hao Lee,et al.  Building Chinese Affective Resources in Valence-Arousal Dimensions , 2016, NAACL.

[129]  Lyle H. Ungar,et al.  Modelling Valence and Arousal in Facebook posts , 2016, WASSA@NAACL-HLT.

[130]  Bernardo Magnini,et al.  Integrating Subject Field Codes into WordNet , 2000, LREC.

[131]  Wen-Lian Hsu,et al.  A Semi-Automatic Method for Annotating a Biomedical Proposition Bank , 2006 .

[132]  Koby Crammer,et al.  Online Large-Margin Training of Dependency Parsers , 2005, ACL.

[133]  D. Watson,et al.  Toward a consensual structure of mood. , 1985, Psychological bulletin.

[134]  R. Thayer The biopsychology of mood and arousal , 1989 .

[135]  Saif Mohammad,et al.  WASSA-2017 Shared Task on Emotion Intensity , 2017, WASSA@EMNLP.

[136]  Darren Gergle,et al.  Emotion rating from short blog texts , 2008, CHI.

[137]  Naftali Tishby,et al.  Unsupervised document classification using sequential information maximization , 2002, SIGIR '02.

[138]  J. R. Landis,et al.  The measurement of observer agreement for categorical data. , 1977, Biometrics.

[139]  Stuart Adam Battersby,et al.  Experimenting with Distant Supervision for Emotion Classification , 2012, EACL.

[140]  K. Bretonnel Cohen,et al.  Sentiment Analysis of Suicide Notes: A Shared Task , 2012, Biomedical informatics insights.

[141]  W. Wundt,et al.  Grundzüge der physiologischen psyhcologie , 1893 .

[142]  T. Landauer,et al.  Indexing by Latent Semantic Analysis , 1990 .