Robust Preconditioners Based on the Finite Element Framework

Robust preconditioners on block-triangular and block-factorized form for three types of linear systems of two-by-two block form are studied in this thesis. The first type of linear systems, which a ...

[1]  Harry Yserentant,et al.  Hierarchical bases of finite-element spaces in the discretization of nonsymmetric elliptic boundary value problems , 1985, Computing.

[2]  Johannes K. Kraus,et al.  Algebraic multilevel preconditioning of finite element matrices using local Schur complements , 2006, Numer. Linear Algebra Appl..

[3]  L. Kolotilina,et al.  Factorized Sparse Approximate Inverse Preconditionings I. Theory , 1993, SIAM J. Matrix Anal. Appl..

[4]  Y. Notay,et al.  A robust algebraic multilevel preconditioner for non symmetric M-matrices , 2000 .

[5]  Svetozar Margenov,et al.  On Multilevel Preconditioners which are Optimal with Respect to Both Problem and Discretization Parameters , 2003 .

[6]  Yvan Notay Optimal V-cycle Algebraic Multilevel Preconditioning , 1998 .

[7]  Detlef Wolf,et al.  Compressible viscoelasticity: stability of solutions for homogeneous plane-Earth models , 2003 .

[8]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[9]  Owe Axelsson,et al.  Eigenvalue estimates for preconditioned saddle point matrices , 2006, Numer. Linear Algebra Appl..

[10]  Owe Axelsson,et al.  Preconditioning of Boundary Value Problems Using Elementwise Schur Complements , 2009, SIAM J. Matrix Anal. Appl..

[11]  Owe Axelsson,et al.  Algebraic multilevel iteration method for Stieltjes matrices , 1994, Numer. Linear Algebra Appl..

[12]  Owe Axelsson,et al.  On a robust and scalable linear elasticity solver based on a saddle point formulation , 1999 .

[13]  R. P. Fedorenko The speed of convergence of one iterative process , 1964 .

[14]  J. Pasciak,et al.  A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems , 1988 .

[15]  D FalgoutRobert An Introduction to Algebraic Multigrid , 2006 .

[16]  J. Pasciak,et al.  Computer solution of large sparse positive definite systems , 1982 .

[17]  Owe Axelsson,et al.  Preconditioning methods for linear systems arising in constrained optimization problems , 2003, Numer. Linear Algebra Appl..

[18]  R.D. Falgout,et al.  An Introduction to Algebraic Multigrid Computing , 2006, Computing in Science & Engineering.

[19]  Harry Yserentant,et al.  Two preconditioners based on the multi-level splitting of finite element spaces , 1990 .

[20]  Ke Chen An Analysis of Sparse Approximate Inverse Preconditioners for Boundary Integral Equations , 2001, SIAM J. Matrix Anal. Appl..

[21]  Maya Neytcheva,et al.  Algebraic preconditioning versus direct solvers for dense linear systems as arising in crack propagation problems , 2004 .

[22]  Owe Axelsson Stabilization of algebraic multilevel iteration methods; additive methods , 2004, Numerical Algorithms.

[23]  E. F. F. Botta,et al.  Matrix Renumbering ILU: An Effective Algebraic Multilevel ILU Preconditioner for Sparse Matrices , 1999, SIAM J. Matrix Anal. Appl..

[24]  Yousef Saad,et al.  ILUT: A dual threshold incomplete LU factorization , 1994, Numer. Linear Algebra Appl..

[25]  Andrew J. Wathen,et al.  A Preconditioner for the Steady-State Navier-Stokes Equations , 2002, SIAM J. Sci. Comput..

[26]  YereminA. Yu.,et al.  Factorized sparse approximate inverse preconditionings I , 1993 .

[27]  Björn Lund,et al.  A comparison between two solution techniques to solve the equations of linear isostasy , 2006 .

[28]  Harry Yserentant On the multi-level splitting of finite element spaces for indefinite elliptic boundary value problems , 1986 .

[29]  Owe Axelsson,et al.  On iterative solvers in structural mechanics; separate displacement orderings and mixed variable methods , 1999 .

[30]  Victor Eijkhout,et al.  The Role of the Strengthened Cauchy-Buniakowskii-Schwarz Inequality in Multilevel Methods , 1991, SIAM Rev..

[31]  Owe Axelsson,et al.  Variable-step multilevel preconditioning methods, I: Self-adjoint and positive definite elliptic problems , 1994, Numer. Linear Algebra Appl..

[32]  曹志浩,et al.  ON ALGEBRAIC MULTILEVEL PRECONDITIONING METHODS , 1993 .

[33]  Owe Axelsson,et al.  On the Additive Version of the Algebraic Multilevel Iteration Method for Anisotropic Elliptic Problems , 1999, SIAM J. Sci. Comput..

[34]  Jiří Nedoma Numerical modelling in applied geodynamics , 1998 .

[35]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[36]  Valeria Simoncini,et al.  Block triangular preconditioners for symmetric saddle-point problems , 2004 .

[37]  S. L. Crouch Solution of plane elasticity problems by the displacement discontinuity method. I. Infinite body solution , 1976 .

[38]  P. Vassilevski Hybrid V-cycle algebraic multilevel preconditioners , 1992 .

[39]  Yvan Notay,et al.  Using approximate inverses in algebraic multilevel methods , 1998, Numerische Mathematik.

[40]  R. P. Fedorenko A relaxation method for solving elliptic difference equations , 1962 .

[41]  Yvan Notay,et al.  Optimal v-cycle algebraic multilevel preconditioning , 1998, Numer. Linear Algebra Appl..

[42]  Yousef Saad,et al.  ARMS: an algebraic recursive multilevel solver for general sparse linear systems , 2002, Numer. Linear Algebra Appl..

[43]  Panayot S. Vassilevski,et al.  Algebraic Multilevel Preconditioning of Anisotropic Elliptic Problems , 1994, SIAM J. Sci. Comput..

[44]  O. Axelsson Solving the Stokes problem on a massively parallel computer , 1999 .

[45]  Yousef Saad,et al.  Multilevel ILU With Reorderings for Diagonal Dominance , 2005, SIAM J. Sci. Comput..

[46]  Masha Sosonkina,et al.  pARMS: a parallel version of the algebraic recursive multilevel solver , 2003, Numer. Linear Algebra Appl..

[47]  I. Gustafsson,et al.  Preconditioning and two-level multigrid methods of arbitrary degree of approximation , 1983 .

[48]  H. Yserentant On the multi-level splitting of finite element spaces , 1986 .

[49]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[50]  Maya Neytcheva,et al.  Finite element block-factorized preconditioners , 2007 .

[51]  Maya Neytcheva,et al.  An Agglomerate Multilevel Preconditioner for Linear Isostasy Saddle Point Problems , 2005, LSSC.

[52]  J. Maître,et al.  The contraction number of a class of two-level methods; an exact evaluation for some finite element subspaces and model problems , 1982 .

[53]  P. Vassilevski,et al.  Algebraic multilevel preconditioning methods. I , 1989 .

[54]  Patrick Wu,et al.  Using commercial finite element packages for the study of earth deformations, sea levels and the state of stress , 2004 .

[55]  Harry Yserentant,et al.  On the multi-level splitting of finite element spaces , 1986 .

[56]  F. Brezzi,et al.  A discourse on the stability conditions for mixed finite element formulations , 1990 .

[57]  Maya Neytcheva,et al.  Preconditioning of nonsymmetric saddle point systems as arising in modelling of viscoelastic problems. , 2008 .

[58]  O. Axelsson,et al.  Algebraic multilevel preconditioning methods, II , 1990 .

[59]  Yvan Notay,et al.  Robust parameter‐free algebraic multilevel preconditioning , 2002, Numer. Linear Algebra Appl..

[60]  Thomas A. Manteuffel,et al.  Algebraic Multigrid Based on Element Interpolation (AMGe) , 2000, SIAM J. Sci. Comput..

[61]  A consistent stabilized formulation for a nonsymmetric saddle-point problem , 2005 .

[62]  Panayot S. Vassilevski,et al.  On Two Ways of Stabilizing the Hierarchical Basis Multilevel Methods , 1997, SIAM Rev..

[63]  A. Ramage A multigrid preconditioner for stabilised discretisations of advection-diffusion problems , 1999 .

[64]  M. Neytcheva,et al.  Numerical simulations of glacial rebound using preconditioned iterative solution methods , 2005 .

[65]  Owe Axelsson,et al.  Two Simple Derivations of Universal Bounds for the C.B.S. Inequality Constant , 2004 .

[66]  Jim E. Jones,et al.  AMGE Based on Element Agglomeration , 2001, SIAM J. Sci. Comput..

[67]  R. Bank,et al.  The hierarchical basis multigrid method , 1988 .

[68]  Per Sundqvist,et al.  Numerical Computations with Fundamental Solutions , 2005 .

[69]  Maya Neytcheva Arithmetic and communication complexity of preconditioning methods , 1995 .

[70]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[71]  O. Axelsson,et al.  Finite element solution of boundary value problemes - theory and computation , 2001, Classics in applied mathematics.