Linear elastic fracture simulation directly from CAD: 2D NURBS-based implementation and role of tip enrichment

We propose a method for simulating linear elastic crack growth through an isogeometric boundary element method directly from a CAD model and without any mesh generation. To capture the stress singularity around the crack tip, two methods are compared: (1) a graded knot insertion near crack tip; (2) partition of unity enrichment. A well-established CAD algorithm is adopted to generate smooth crack surfaces as the crack grows. The M integral and $$J_k$$Jk integral methods are used for the extraction of stress intensity factors (SIFs). The obtained SIFs and crack paths are compared with other numerical methods.

[1]  Kang Li,et al.  Isogeometric analysis and shape optimization via boundary integral , 2011, Comput. Aided Des..

[2]  G. Maier,et al.  Symmetric Galerkin Boundary Element Methods , 1998 .

[3]  Stéphane Bordas,et al.  Enriched finite elements and level sets for damage tolerance assessment of complex structures , 2006 .

[4]  T. Hughes,et al.  ISOGEOMETRIC COLLOCATION METHODS , 2010 .

[5]  M. Aliabadi,et al.  Dual boundary element method for three-dimensional fracture mechanics analysis , 1992 .

[6]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part I: Mechanical model , 2002 .

[7]  Alok Sutradhar,et al.  Symmetric Galerkin boundary element computation of T-stress and stress intensity factors for mixed-mode cracks by the interaction integral method , 2004 .

[8]  M. Aliabadi,et al.  Discontinuous crack-tip elements: Application to 3D boundary element method , 1994 .

[9]  S. Atluri,et al.  Fracture & Fatigue Analyses: SGBEM-FEM or XFEM?Part 2: 3D Solids , 2013 .

[10]  R. Simpson,et al.  A partition of unity enriched dual boundary element method for accurate computations in fracture mechanics , 2011 .

[11]  T. Rudolphi The use of simple solutions in the regularization of hypersingular boundary integral equations , 1991 .

[12]  M. Aliabadi,et al.  Decomposition of the mixed-mode J-integral—revisited , 1998 .

[13]  Yijun Liu,et al.  Some identities for fundamental solutions and their applications to weakly-singular boundary element formulations , 1991 .

[14]  Cv Clemens Verhoosel,et al.  A phase-field description of dynamic brittle fracture , 2012 .

[15]  Ted Belytschko,et al.  A vector level set method and new discontinuity approximations for crack growth by EFG , 2002 .

[16]  Mohaddeseh Mousavi Nezhad,et al.  Three‐dimensional brittle fracture: configurational‐force‐driven crack propagation , 2013, 1304.6136.

[17]  J. Eischen An improved method for computing the J2 integral , 1987 .

[18]  Mircea Grigoriu,et al.  Probabilistic Fracture Mechanics: A Validation of Predictive Capability , 1990 .

[19]  Bhushan Lal Karihaloo,et al.  Accurate determination of the coefficients of elastic crack tip asymptotic field , 2001 .

[20]  Marc Daniel,et al.  Local Deformation of NURBS Curves , 2005 .

[21]  L. Gray,et al.  Use of ‘simple solutions’ for boundary integral methods in elasticity and fracture analysis , 1992 .

[22]  D. Rooke,et al.  Dual boundary element analysis of cracked plates: singularity subtraction technique , 1992 .

[23]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[24]  G. Kuhn,et al.  Comparison of the basic and the discontinuity formulation of the 3D-dual boundary element method , 2000 .

[25]  M. Scott,et al.  Acoustic isogeometric boundary element analysis , 2014 .

[26]  J. Domínguez,et al.  A direct traction BIE approach for three-dimensional crack problems , 2000 .

[27]  T. Belytschko,et al.  X‐FEM in isogeometric analysis for linear fracture mechanics , 2011 .

[28]  Gernot Beer,et al.  A simple approach to the numerical simulation with trimmed CAD surfaces , 2015, ArXiv.

[29]  Satya N. Atluri,et al.  SGBEM-FEM Alternating Method for Analyzing 3D Non-planar Cracks and Their Growth in Structural Components , 2001 .

[30]  J. Trevelyan,et al.  Extended isogeometric boundary element method (XIBEM) for two-dimensional Helmholtz problems , 2013 .

[31]  David J. Benson,et al.  A multi-patch nonsingular isogeometric boundary element method using trimmed elements , 2015, Computational Mechanics.

[32]  Massimo Guiggiani,et al.  A self‐adaptive co‐ordinate transformation for efficient numerical evaluation of general boundary element integrals , 1988 .

[33]  T. Rabczuk,et al.  On three-dimensional modelling of crack growth using partition of unity methods , 2010 .

[34]  F. Erdogan,et al.  On the Crack Extension in Plates Under Plane Loading and Transverse Shear , 1963 .

[35]  Panagiotis D. Kaklis,et al.  An isogeometric BEM for exterior potential-flow problems in the plane , 2009, Symposium on Solid and Physical Modeling.

[36]  D. Rooke,et al.  The dual boundary element method: Effective implementation for crack problems , 1992 .

[37]  T. Rabczuk,et al.  Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment , 2008 .

[38]  Shuodao Wang,et al.  A Mixed-Mode Crack Analysis of Isotropic Solids Using Conservation Laws of Elasticity , 1980 .

[39]  Vinh Phu Nguyen,et al.  Two- and three-dimensional isogeometric cohesive elements for composite delamination analysis , 2014, Composites Part B: Engineering.

[40]  Thomas J. R. Hughes,et al.  Isogeometric Analysis of Boundary Integral Equations , 2015 .

[41]  Tom Lyche,et al.  Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..

[42]  Moussa Nait-Abdelaziz,et al.  A coupled FEM/BEM approach and its accuracy for solving crack problems in fracture mechanics , 2007 .

[43]  T. Cruse,et al.  Boundary-integral equation analysis of cracked anisotropic plates , 1975 .

[44]  I. Harari,et al.  A direct analytical method to extract mixed‐mode components of strain energy release rates from Irwin's integral using extended finite element method , 2013 .

[45]  Anthony R. Ingraffea,et al.  Two‐dimensional stress intensity factor computations using the boundary element method , 1981 .

[46]  F. Rizzo,et al.  HYPERSINGULAR INTEGRALS: HOW SMOOTH MUST THE DENSITY BE? , 1996 .

[47]  K. Shivakumar,et al.  An equivalent domain integral method for three-dimensional mixed-mode fracture problems , 1992 .

[48]  P. K. Banerjee The Boundary Element Methods in Engineering , 1994 .

[49]  Guangyao Li,et al.  Isogeometric analysis in BIE for 3-D potential problem , 2012 .

[50]  J. Chang,et al.  Stress intensity factor computation along a non-planar curved crack in three dimensions , 2007 .

[51]  John A. Evans,et al.  Isogeometric boundary element analysis using unstructured T-splines , 2013 .

[52]  S. K. Maiti,et al.  Modified crack closure integral technique for extraction of SIFs in meshfree methods , 2014 .

[53]  R. D. Henshell,et al.  CRACK TIP FINITE ELEMENTS ARE UNNECESSARY , 1975 .

[54]  K. Liew,et al.  Analyzing the 2D fracture problems via the enriched boundary element-free method , 2007 .

[55]  M. Aliabadi,et al.  Dual boundary element assessment of three-dimensional fatigue crack growth , 2004 .

[56]  J. Rice,et al.  Slightly curved or kinked cracks , 1980 .

[57]  J. Domínguez,et al.  On the use of quarter‐point boundary elements for stress intensity factor computations , 1984 .

[58]  Stéphane Bordas,et al.  Global energy minimization for all crack increment directions in the framework of XFEM , 2013 .

[59]  Marc Duflot,et al.  Derivative recovery and a posteriori error estimate for extended finite elements , 2007 .

[60]  Jean-François Remacle,et al.  Substructuring FE-XFE approaches applied to three-dimensional crack propagation , 2008 .

[61]  L. Heltai,et al.  Nonsingular isogeometric boundary element method for Stokes flows in 3D , 2014 .

[62]  Jiansong Deng,et al.  Polynomial splines over hierarchical T-meshes , 2008, Graph. Model..

[63]  T. Rabczuk,et al.  A two-dimensional Isogeometric Boundary Element Method for elastostatic analysis , 2012 .

[64]  F. Rizzo,et al.  A General Algorithm for the Numerical Solution of Hypersingular Boundary Integral Equations , 1992 .

[65]  Ahmad Akbari Rahimabadi,et al.  Error controlled adaptive multiscale method for fracture in polycrystalline materials , 2014 .

[66]  A. Portela Dual boundary‐element method: Simple error estimator and adaptivity , 2011 .

[67]  Michael Feischl,et al.  Reliable and efficient a posteriori error estimation for adaptive IGA boundary element methods for weakly-singular integral equations , 2014, Computer methods in applied mechanics and engineering.

[68]  B. Moran,et al.  An interaction energy integral method for computation of mixed-mode stress intensity factors along non-planar crack fronts in three dimensions , 2002 .

[69]  F. J. Fuenmayor,et al.  Mesh adaptivity driven by goal-oriented locally equilibrated superconvergent patch recovery , 2012, 1209.3102.

[70]  N. Valizadeh,et al.  Extended isogeometric analysis for simulation of stationary and propagating cracks , 2012 .

[71]  M. Pavier,et al.  The role of T-stress in brittle fracture for linear elastic materials under mixed-mode loading , 2001 .

[72]  A. Frangi Fracture propagation in 3D by the symmetric Galerkin boundary element method , 2002 .

[73]  H. Hong,et al.  Derivations of Integral Equations of Elasticity , 1988 .

[74]  J. Sládek,et al.  Regularization Techniques Applied to Boundary Element Methods , 1994 .

[75]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part II: Level set update , 2002 .

[76]  S. L. Crouch Solution of plane elasticity problems by the displacement discontinuity method. I. Infinite body solution , 1976 .

[77]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[78]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[79]  J. Telles A self-adaptive co-ordinate transformation for efficient numerical evaluation of general boundary element integrals , 1987 .

[80]  Weiwei Sun,et al.  A direct method for calculating the stress intensity factor in BEM , 1993 .

[81]  F. Auricchio,et al.  The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: mixed FEMs versus NURBS-based approximations , 2010 .

[82]  Stéphane Bordas,et al.  An extended finite element library , 2007 .

[83]  G. Maier,et al.  Symmetric Galerkin boundary element method , 2008 .

[84]  A. Paluszny,et al.  Numerical fracture growth modeling using smooth surface geometric deformation , 2013 .

[85]  T. Hughes,et al.  Local refinement of analysis-suitable T-splines , 2012 .

[86]  Victor M. Calo,et al.  The role of continuity in residual-based variational multiscale modeling of turbulence , 2007 .

[87]  P. Juhl A NOTE ON THE CONVERGENCE OF THE DIRECT COLLOCATION BOUNDARY ELEMENT METHOD , 1998 .

[88]  Paul A. Wawrzynek,et al.  3-D simulation of arbitrary crack growth using an energy-based formulation – Part II: Non-planar growth , 2014 .

[89]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[90]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[91]  Pierre-Olivier Bouchard,et al.  Crack propagation modelling using an advanced remeshing technique , 2000 .

[92]  D. Arnold,et al.  On the Asymptotic Convergence of Spline Collocation Methods for Partial Differential Equations , 1984 .

[93]  Thomas J. R. Hughes,et al.  Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .

[94]  D. Chopp,et al.  Three‐dimensional non‐planar crack growth by a coupled extended finite element and fast marching method , 2008 .

[95]  S. Li,et al.  Symmetric weak-form integral equation method for three-dimensional fracture analysis , 1998 .

[96]  Thomas J. R. Hughes,et al.  An isogeometric approach to cohesive zone modeling , 2011 .

[97]  Juan José Ródenas,et al.  Equilibrated patch recovery for accurate evaluation of upper error bounds in quantities of interest , 2012 .

[98]  Thomas-Peter Fries,et al.  Fast Isogeometric Boundary Element Method based on Independent Field Approximation , 2014, ArXiv.

[99]  L. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communications.

[100]  S. Mukherjee,et al.  Thermoelastic fracture mechanics with regularized hypersingular boundary integral equations , 1999 .

[101]  S. Bordas,et al.  A posteriori error estimation for extended finite elements by an extended global recovery , 2008 .

[102]  Olivier Goury,et al.  Computational time savings in multiscale fracturemechanics using model order reduction , 2015 .

[103]  S. Natarajan,et al.  Representation of singular fields without asymptotic enrichment in the extended finite element method , 2012, 1212.6957.

[104]  Juan José Ródenas,et al.  A recovery‐type error estimator for the extended finite element method based on singular+smooth stress field splitting , 2008 .