Asymmetric quantum telecloning of d-level systems and broadcasting of entanglement to different locations using the many-to-many communication protocol

We propose a generalization of quantum teleportation: the so-called many-to-many quantum communication of the information of a d-level system from N spatially separated senders to M>N receivers situated at different locations. We extend the concept of asymmetric telecloning from qubits to d-dimensional systems. We investigate the broadcasting of entanglement by using local 1→2 optimal universal asymmetric Pauli machines and show that the maximal fidelities of the two final entangled states are obtained when symmetric machines are applied. Cloning of entanglement is studied using a nonlocal optimal universal asymmetric cloning machine and we show that the symmetric machine optimally copies the entanglement. The "many-to-many" teleportation scheme is applied in order to distribute entanglement shared between two observers to two pairs of snatiallv separated observers.

[1]  Vlatko Vedral,et al.  Quantum-information distribution via entanglement , 1999, quant-ph/9909031.

[2]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[3]  Nicolas J. Cerf,et al.  Asymmetric quantum cloning in any dimension , 1998, quant-ph/9805024.

[4]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[5]  M. Wadati,et al.  Quantum cloning machines of a d-level system , 2001, quant-ph/0103053.

[6]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[7]  Buzek,et al.  Quantum copying: Beyond the no-cloning theorem. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[8]  Nicolas Gisin,et al.  Quantum cloning with an optical fiber amplifier. , 2002, Physical review letters.

[9]  M. Hillery,et al.  Broadcasting of entanglement via local copying , 1997 .

[10]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[11]  D. Bruß,et al.  Optimal universal and state-dependent quantum cloning , 1997, quant-ph/9705038.

[12]  R. Werner,et al.  Optimal cloning of pure states, testing single clones , 1998, quant-ph/9807010.

[13]  Mark Hillery,et al.  UNIVERSAL OPTIMAL CLONING OF ARBITRARY QUANTUM STATES : FROM QUBITS TO QUANTUM REGISTERS , 1998 .

[14]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[15]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[16]  Cloning a qutrit , 2001, quant-ph/0110092.

[17]  D. Bouwmeester,et al.  Experimental Quantum Cloning of Single Photons , 2002, Science.

[18]  M. Murao,et al.  Quantum telecloning and multiparticle entanglement , 1998, quant-ph/9806082.

[19]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[20]  S. Massar,et al.  Optimal Quantum Cloning Machines , 1997, quant-ph/9705046.

[21]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[22]  Paolo Zanardi,et al.  Quantum cloning in d dimensions , 1998 .

[23]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[24]  R. Jozsa Fidelity for Mixed Quantum States , 1994 .

[25]  P. Knight,et al.  Multiparticle generalization of entanglement swapping , 1998 .

[26]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[27]  D. Bruß,et al.  Optimal Universal Quantum Cloning and State Estimation , 1997, quant-ph/9712019.

[28]  R. Werner OPTIMAL CLONING OF PURE STATES , 1998, quant-ph/9804001.

[29]  Cerf,et al.  Pauli cloning of a quantum Bit , 2000, Physical review letters.