Estimation of pressure and saturation fields from time-lapse impedance data using the ensemble smoother

This paper introduces the use of the ensemble smoother as a method to invert time-lapse seismic data into pressure and saturation fields. The proposed method uses engineering information described in terms of reservoir flow simulations to generate samples of the prior uncertainty space. Subsequently, these samples are corrected using the time-lapse seismic as conditioning data. The problem is formulated in terms of generating an ensemble of pressure and saturation fields sampling the posterior uncertainty space. The proposed method is very flexible and computationally easy to implement. It has very few requirements in terms of the forward model (reservoir flow simulations and petroelastic modeling). This makes the method straightforward to integrate with existing commercial tools.

[1]  Esa Nummelin,et al.  MC's for MCMC'ists , 2002 .

[2]  M. Landrø,et al.  4D Seismic Modeling Integrated with the Ensemble Kalman Filter Method for History Matching of Reservoir Simulation Model , 2008 .

[3]  Sigurd Ivar Aanonsen,et al.  4D Seismic History Matching of a Real Field Case With EnKF: Use of Local Analysis for Model Updating , 2010 .

[4]  Dean S. Oliver,et al.  Conditioning Permeability Fields to Pressure Data , 1996 .

[5]  Denis José Schiozer,et al.  Pressure and saturation estimation from P and S impedances: a theoretical study , 2012 .

[6]  P. Houtekamer,et al.  Data Assimilation Using an Ensemble Kalman Filter Technique , 1998 .

[7]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[8]  Tor Arne Johansen,et al.  Incorporating 4D Seismic Data in Reservoir Simulation Models Using Ensemble Kalman Filter , 2007 .

[9]  Colin MacBeth,et al.  Going quantitative with 4D seismic analysis , 2006 .

[10]  Denis José Schiozer,et al.  A methodology to constrain pressure and saturation estimation from 4D seismic using multiple simulation models and observed data , 2013 .

[11]  G. Evensen,et al.  Data assimilation and inverse methods in terms of a probabilistic formulation , 1996 .

[12]  Ali Tura,et al.  Estimating Pressure and Saturation Changes From Time-Lapse AVO Data , 2000 .

[13]  Martin Landrø,et al.  Nonlinear inversion for estimating reservoir parameters from time-lapse seismic data , 2008 .

[14]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[15]  Albert C. Reynolds,et al.  Ensemble smoother with multiple data assimilation , 2013, Comput. Geosci..

[16]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[17]  G. Evensen,et al.  Assimilation of Geosat altimeter data for the Agulhas current using the ensemble Kalman filter with , 1996 .

[18]  Albert C. Reynolds,et al.  Assessing the Uncertainty in Reservoir Description and Performance Predictions With the Ensemble Kalman Filter , 2007 .

[19]  Martin Landrø,et al.  Discrimination between pressure and fluid saturation changes from time-lapse seismic data , 2001 .

[20]  G. Evensen,et al.  Sequential Data Assimilation Techniques in Oceanography , 2003 .

[21]  Dean S. Oliver,et al.  THE ENSEMBLE KALMAN FILTER IN RESERVOIR ENGINEERING-A REVIEW , 2009 .

[22]  T. Mukerji,et al.  The Rock Physics Handbook , 1998 .

[23]  Chaohui Chen,et al.  Closed-loop reservoir management on the Brugge test case , 2010 .

[24]  G. Evensen,et al.  An ensemble Kalman smoother for nonlinear dynamics , 2000 .

[25]  Zhijing Wang,et al.  Seismic properties of pore fluids , 1992 .

[26]  G. Evensen Sampling strategies and square root analysis schemes for the EnKF , 2004 .

[27]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[28]  Thomas M. Hamill,et al.  Ensemble Data Assimilation with the NCEP Global Forecast System , 2008 .

[29]  A. Reynolds,et al.  Combining sensitivities and prior information for covariance localization in the ensemble Kalman filter for petroleum reservoir applications , 2011 .

[30]  Jan-Arild Skjervheim,et al.  An Ensemble Smoother for Assisted History Matching , 2011, ANSS 2011.

[31]  P. L. Houtekamer,et al.  Ensemble Kalman filtering , 2005 .

[32]  A. Reynolds,et al.  History matching time-lapse seismic data using the ensemble Kalman filter with multiple data assimilations , 2012, Computational Geosciences.

[33]  Albert C. Reynolds,et al.  Monte Carlo simulation of permeability fields and reservoir performance predictions with SVD parameterization in RML compared with EnKF , 2011 .

[34]  F. Gassmann,et al.  Elastic waves through a packing of spheres , 1951 .

[35]  D. Oliver,et al.  Recent progress on reservoir history matching: a review , 2011 .

[36]  Sigurd Ivar Aanonsen,et al.  Ensemble Based 4D Seismic History Matching: Integration of Different Levels and Types of Seismic Data , 2010 .

[37]  A. Stuart,et al.  Well-posedness and accuracy of the ensemble Kalman filter in discrete and continuous time , 2013, 1310.3167.

[38]  J. Jansen,et al.  Closed-loop reservoir management , 2005 .

[39]  P. Houtekamer,et al.  A Sequential Ensemble Kalman Filter for Atmospheric Data Assimilation , 2001 .

[40]  Christian L. Keppenne,et al.  Assimilation of temperature into an isopycnal ocean general circulation model using a parallel ensemble Kalman filter , 2003 .

[41]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .

[42]  Dean S. Oliver,et al.  Ensemble-Based Closed-Loop Optimization Applied to Brugge Field , 2010 .

[43]  G. Evensen Data Assimilation: The Ensemble Kalman Filter , 2006 .

[44]  D. Oliver,et al.  Levenberg–Marquardt forms of the iterative ensemble smoother for efficient history matching and uncertainty quantification , 2013, Computational Geosciences.

[45]  D. Oliver,et al.  Ensemble Randomized Maximum Likelihood Method as an Iterative Ensemble Smoother , 2011, Mathematical Geosciences.

[46]  Geir Evensen,et al.  The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .

[47]  Dean S. Oliver,et al.  Sequential assimilation of 4D seismic data for reservoir description using the ensemble Kalman filter , 2006 .

[48]  Roald Brouwer,et al.  Closed Loop Reservoir Management , 2009 .

[49]  P. Kitanidis Quasi‐Linear Geostatistical Theory for Inversing , 1995 .

[50]  Ning Liu,et al.  Inverse Theory for Petroleum Reservoir Characterization and History Matching , 2008 .

[51]  Istvan Szunyogh,et al.  Assessing a local ensemble Kalman filter: perfect model experiments with the National Centers for Environmental Prediction global model , 2005 .