Implementation of the NHI (Normalized Hot Spot Indices) Algorithm on Infrared ASTER Data: Results and Future Perspectives

The Normalized Hotspot Indices (NHI) tool is a Google Earth Engine (GEE)-App developed to investigate and map worldwide volcanic thermal anomalies in daylight conditions, using shortwave infrared (SWIR) and near infrared (NIR) data from the Multispectral Instrument (MSI) and the Operational Land Imager (OLI), respectively, onboard the Sentinel 2 and Landsat 8 satellites. The NHI tool offers the possibility of ingesting data from other sensors. In this direction, we tested the NHI algorithm for the first time on Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. In this study, we show the results of this preliminary implementation, achieved investigating the Kilauea (Hawaii, USA), Klyuchevskoy (Kamchatka; Russia), Shishaldin (Alaska; USA), and Telica (Nicaragua) thermal activities of March 2000–2008. We assessed the NHI detections through comparison with the ASTER Volcano Archive (AVA), the manual inspection of satellite imagery, and the information from volcanological reports. Results show that NHI integrated the AVA observations, with a percentage of unique thermal anomaly detections ranging between 8.8% (at Kilauea) and 100% (at Shishaldin). These results demonstrate the successful NHI exportability to ASTER data acquired before the failure of SWIR subsystem. The full ingestion of the ASTER data collection, available in GEE, within the NHI tool allows us to develop a suite of multi-platform satellite observations, including thermal anomaly products from Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+), which could support the investigation of active volcanoes from space, complementing information from other systems.

[1]  L. Clarisse,et al.  Constraints on eruption processes and event masses for the 2016–2017 eruption of Bogoslof volcano, Alaska, through evaluation of IASI satellite SO2 masses and complementary datasets , 2020, Bulletin of Volcanology.

[2]  San Jacinto-Tizate geothermal field, Nicaragua: Exploration and conceptual model , 1998 .

[3]  Yasushi Yamaguchi,et al.  Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) , 1998, IEEE Trans. Geosci. Remote. Sens..

[4]  Peter I. Miller,et al.  Low-cost volcano surveillance from space: case studies from Etna, Krafla, Cerro Negro, Fogo, Lascar and Erebus , 1997 .

[5]  A. Harris,et al.  Automated volcanic eruption detection using MODIS , 2001 .

[6]  David C. Pieri,et al.  ASTER watches the world's volcanoes: a new paradigm for volcanological observations from orbit , 2004 .

[7]  Michael S. Ramsey,et al.  The Spatial and Spectral Resolution of ASTER Infrared Image Data: A Paradigm Shift in Volcanological Remote Sensing , 2020, Remote. Sens..

[8]  V. Lombardo,et al.  Lava flow thermal analysis using three infrared bands of remote-sensing imagery: A study case from Mount Etna 2001 eruption , 2006 .

[10]  Nicola Pergola,et al.  A Google Earth Engine Tool to Investigate, Map and Monitor Volcanic Thermal Anomalies at Global Scale by Means of Mid-High Spatial Resolution Satellite Data , 2020, Remote. Sens..

[11]  M. Abrams,et al.  ASTER observations of thermal anomalies preceding the April 2003 eruption of Chikurachki volcano, Kurile Islands, Russia , 2005 .

[12]  Michael S. Ramsey,et al.  Spaceborne observations of the 2000 Bezymianny, Kamchatka eruption: the integration of high-resolution ASTER data into near real-time monitoring using AVHRR , 2004 .

[13]  P. LaFemina,et al.  Stable and Unstable Phases of Elevated Seismic Activity at the Persistently Restless Telica Volcano, Nicaragua , 2015 .

[14]  Peter T. Fretwell,et al.  Evidence for a lava lake on Mt. Michael volcano, Saunders Island (South Sandwich Islands) from Landsat, Sentinel-2 and ASTER satellite imagery , 2019, Journal of Volcanology and Geothermal Research.

[15]  Michael S. Ramsey,et al.  The 2005 eruption of Kliuchevskoi volcano: Chronology and processes derived from ASTER spaceborne and field-based data , 2009 .

[16]  Martin J. Wooster,et al.  Evaluation of SWIR-based methods for quantifying active volcano radiant emissions using NASA EOS-ASTER data , 2011 .

[17]  Alain Bernard,et al.  Investigating crater lake warming using ASTER thermal imagery: Case studies at Ruapehu, Poás, Kawah Ijen, and Copahué Volcanoes , 2008 .

[18]  D. Squires Report on Kilauea (United States) , 2022, Bulletin of the Global Volcanism Network.

[19]  Michael S. Ramsey,et al.  Synergistic use of satellite thermal detection and science: a decadal perspective using ASTER , 2015, Special Publications.

[20]  S. Plank,et al.  The short life of the volcanic island New Late’iki (Tonga) analyzed by multi-sensor remote sensing data , 2020, Scientific Reports.

[21]  M. Ramsey,et al.  Predicting eruptions from precursory activity using remote sensing data hybridization , 2016 .

[22]  Carlos Roberto de Souza Filho,et al.  Monitoring volcanic thermal anomalies from space: Size matters , 2011 .

[23]  Teodosio Lacava,et al.  A review of RSTVOLC, an original algorithm for automatic detection and near-real-time monitoring of volcanic hotspots from space , 2015, Special Publications.

[24]  D. Coppola,et al.  The AVTOD (ASTER Volcanic Thermal Output Database) Latin America archive , 2019, Journal of Volcanology and Geothermal Research.

[25]  David C. Pieri,et al.  Thermal Analysis of Volcanoes Based on 10 Years of ASTER Data on Mt. Etna , 2013 .

[26]  Matthieu Kervyn,et al.  Thermal remote sensing of the low‐intensity carbonatite volcanism of Oldoinyo Lengai, Tanzania , 2008 .

[27]  M. Ripepe,et al.  Enhanced volcanic hot-spot detection using MODIS IR data: results from the MIROVA system , 2015, Special Publications.

[28]  S. Plank,et al.  Estimates of lava discharge rate of 2018 Kīlauea Volcano, Hawaiʻi eruption using multi-sensor satellite and laboratory measurements , 2021 .

[29]  M. Patrick,et al.  Thermal mapping of Hawaiian volcanoes with ASTER satellite data , 2011 .

[30]  S. Businger,et al.  Two Ensemble Approaches for Forecasting Sulfur Dioxide Concentrations from Kīlauea Volcano , 2020, Weather and Forecasting.

[31]  M. Gouhier,et al.  HOTVOLC: a web-based monitoring system for volcanic hot spots , 2016, Special Publications.

[32]  R. Andrews,et al.  Bulletin of the Global Volcanism Network , 2014 .

[33]  Yasushi Yamaguchi,et al.  Twenty Years of ASTER Contributions to Lithologic Mapping and Mineral Exploration , 2019, Remote. Sens..

[34]  M. Abrams The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): Data products for the high spatial resolution imager on NASA's Terra platform , 2000 .

[35]  K. Dean,et al.  Satellite monitoring of remote volcanoes improves study efforts in Alaska , 1998 .

[36]  Adam Carter,et al.  Long-Term Volcanic Activity at Shiveluch Volcano: Nine Years of ASTER Spaceborne Thermal Infrared Observations , 2010, Remote. Sens..

[37]  Arun K. Saraf,et al.  A Landsat TM based comparative study of surface and subsurface fires in the Jharia coalfield, India , 1997 .

[38]  Nicola Pergola,et al.  A Multi-Channel Algorithm for Mapping Volcanic Thermal Anomalies by Means of Sentinel-2 MSI and Landsat-8 OLI Data , 2019, Remote. Sens..

[39]  Teodosio Lacava,et al.  The Contribution of Multi-Sensor Infrared Satellite Observations to Monitor Mt. Etna (Italy) Activity during May to August 2016 , 2018, Remote. Sens..

[40]  David Clifford Wilson,et al.  New episodes of volcanism at Kilauea Volcano, Hawaii , 2008 .

[41]  Teodosio Lacava,et al.  Assessing Performance of the RSTVOLC Multi-Temporal Algorithm in Detecting Subtle Hot Spots at Oldoinyo Lengai (Tanzania, Africa) for Comparison with MODLEN , 2018, Remote. Sens..

[42]  Philip E. Dennison,et al.  Comparison of fire temperature and fractional area modeled from SWIR, MIR, and TIR multispectral and SWIR hyperspectral airborne data , 2011 .

[43]  Felipe Aguilera,et al.  Volcanic Anomalies Monitoring System (VOLCANOMS), a Low-Cost Volcanic Monitoring System Based on Landsat Images , 2020, Remote. Sens..

[44]  O. Girina,et al.  On precursor of Kamchatkan volcanoes eruptions based on data from satellite monitoring , 2012, Journal of Volcanology and Seismology.