Terahertz Even-Order Subharmonic Mixer Using Symmetric MOS Varactors

A 560-GHz radio frequency (RF) front-end employing an accumulation mode MOS symmetric varactor (SVAR) subharmonic mixer achieves a minimum single sideband (SSB) noise figure (NF) of 35 dB in the fourth-order subharmonic mixing (SHM) mode which is 5 dB lower than that of SiGe HBT mixers. The front-end fabricated in 65-nm CMOS also achieves 45-dB SSB NF for sixth-order SHM at RF=810 GHz and 60-dB SSB NF for tenth-order SHM at RF=1.2 THz. Use of SVARs in a mixer is the first and the 1.2-THz RF is the highest for mixers in silicon technologies. The measurement results are explained using the parametric amplification theory.

[1]  Ehsan Afshari,et al.  Low-Noise Parametric Resonant Amplifier , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[2]  Wooyeol Choi,et al.  410-GHz CMOS imager using a 4th sub-harmonic mixer with effective NEP of 0.3 fW/Hz0.5 at 1-kHz noise bandwidth , 2015, 2015 Symposium on VLSI Circuits (VLSI Circuits).

[3]  John D. Cressler,et al.  A Comparison of the Degradation in RF Performance Due to Device Interconnects in Advanced SiGe HBT and CMOS Technologies , 2015, IEEE Transactions on Electron Devices.

[4]  E. M. Rutz-Philipp,et al.  Design technique for high-efficiency frequency doublers based on the manley and Rowe energy relations , 1966 .

[6]  Janusz Grzyb,et al.  160-GHz to 1-THz Multi-Color Active Imaging With a Lens-Coupled SiGe HBT Chip-Set , 2015, IEEE Transactions on Microwave Theory and Techniques.

[7]  Yukun Zhu,et al.  426-GHz Imaging Pixel Integrating a Transmitter and a Coherent Receiver with an Area of 380×47μm2 in 65-nm CMOS , 2019, 2019 Symposium on VLSI Circuits.

[8]  Ullrich R. Pfeiffer,et al.  A 650GHz SiGe receiver front-end for terahertz imaging arrays , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[9]  Sebastian Magierowski,et al.  Coherent parametric RF downconversion in CMOS , 2010, 2010 IEEE Radio Frequency Integrated Circuits Symposium.

[10]  M. E. Hines,et al.  The Virtues of Nonlinearity--Detection, Frequency Conversion, Parametric Amplification and Harmonic Generation , 1984 .

[11]  I. Mehdi,et al.  A Unique 520–590 GHz Biased Subharmonically-Pumped Schottky Mixer , 2007, IEEE Microwave and Wireless Components Letters.

[12]  W. Grundfest,et al.  THz Medical Imaging: in vivo Hydration Sensing , 2011, IEEE Transactions on Terahertz Science and Technology.

[13]  G. Wade,et al.  Gain, Band Width, and Noise Characteristics of the Variable‐Parameter Amplifier , 1958 .

[14]  Wooyeol Choi,et al.  Terahertz RF Front-End Employing Even-Order Subharmonic MOS Symmetric Varactor Mixers in 65-NM CMOS for Hydration Measurements at 560 GHz , 2018, 2018 IEEE Symposium on VLSI Circuits.

[15]  E.D. Reed,et al.  The variable-capacitance parametric amplifier , 1959, IRE Transactions on Electron Devices.

[16]  Dongha Shim,et al.  Symmetric Varactor in 130-nm CMOS for Frequency Multiplier Applications , 2011, IEEE Electron Device Letters.

[17]  Edinei Santin,et al.  An 8-bit 120-MS/s Interleaved CMOS Pipeline ADC Based on MOS Parametric Amplification , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.

[18]  H. E. Rowe,et al.  Some General Properties of Nonlinear Elements. II. Small Signal Theory , 1958, Proceedings of the IRE.

[19]  Christopher Miller,et al.  25.2 A 210-to-305GHz CMOS receiver for rotational spectroscopy , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[20]  Thomas H. Lee,et al.  A Phase-Interpolation and Quadrature-Generation Method Using Parametric Energy Transfer in CMOS , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[21]  D. J. Lary,et al.  Devices and circuits in CMOS for THz applications , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[22]  H. Rowe,et al.  Some General Properties of Nonlinear Elements-Part I. General Energy Relations , 1956, Proceedings of the IRE.

[23]  Mark Lee,et al.  20.5 1.4THz, −13dBm-EIRP frequency multiplier chain using symmetric- and asymmetric-CV varactors in 65nm CMOS , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[24]  A. Cullen,et al.  A Travelling-Wave Parametric Amplifier , 1958, Nature.

[25]  Swen Kortig,et al.  Foundations For Microwave Engineering , 2016 .

[26]  Ruonan Han,et al.  A broadband 480-GHz passive frequency doubler in 65-nm bulk CMOS with 0.23mW output power , 2012, 2012 IEEE Radio Frequency Integrated Circuits Symposium.

[27]  Takis Zourntos,et al.  Compact parametric downconversion using MOS varactors , 2009, 2009 IEEE MTT-S International Microwave Symposium Digest.

[28]  P. K. Tien,et al.  Parametric Amplification and Frequency Mixing in Propagating Circuits , 1958 .

[29]  Ruonan Han,et al.  Opening Terahertz for Everyday Applications , 2019, IEEE Communications Magazine.

[30]  R. Melville,et al.  Simulation-assisted design and analysis of varactor-based frequency multipliers and dividers , 2006, IEEE Transactions on Microwave Theory and Techniques.

[31]  Ehsan Afshari,et al.  Distributed Parametric Resonator: A Passive CMOS Frequency Divider , 2010, IEEE Journal of Solid-State Circuits.

[32]  N. Sharma,et al.  225–280 GHz receiver for rotational spectroscopy , 2016, 2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[33]  Atsushi Yoshizawa,et al.  A Gain-Boosted Discrete-Time Charge-Domain FIR LPF with Double-Complementary MOS Parametric Amplifiers , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[34]  Zhixing Zhao,et al.  RF CMOS Parametric Downconverters , 2010, IEEE Transactions on Microwave Theory and Techniques.