Decoupling linear multiinput multioutput plants by dynamic output feedback: An algebraic theory

This paper presents an algebraic theory for the design of a decoupling compensator for linear time-invariant multiinput multioutput systems. The design method uses a two-input one-output compensator, which gives a convenient parametrization of all diagonal input-output (I/ O) maps and all disturbance-to-output (D/O) maps achievable by a stabilizing compensator for a given plant. It is shown that this method has two degrees of freedom: any achievable diagonal I/O map and any achievable D/O map can be realized simultaneously by a choice of an appropriate compensator. The difference between all achievable diagonal and nondiagonal I/O maps and the "cost" of decoupling is discussed for some particular algebraic settings.

[1]  R. Tennant Algebra , 1941, Nature.

[2]  W. Rudin Real and complex analysis , 1968 .

[3]  Charles A. Desoer,et al.  Basic Circuit Theory , 1969 .

[4]  W. Wolovich State-space and multivariable theory , 1972 .

[5]  C. Desoer,et al.  Feedback Systems: Input-Output Properties , 1975 .

[6]  D.L. Elliott,et al.  Feedback systems: Input-output properties , 1976, Proceedings of the IEEE.

[7]  Dante C. Youla,et al.  Modern Wiener-Hopf Design of Optimal Controllers. Part I , 1976 .

[8]  J. Pearson,et al.  Frequency domain synthesis of multivariable linear regulators , 1977, 1977 IEEE Conference on Decision and Control including the 16th Symposium on Adaptive Processes and A Special Symposium on Fuzzy Set Theory and Applications.

[9]  Karl Johan Åström,et al.  Robustness of a design method based on assignment of poles and zeros , 1980 .

[10]  C. Desoer,et al.  Feedback system design: The fractional representation approach to analysis and synthesis , 1979, 1979 18th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[11]  J. B. Pearson,et al.  Synthesis of Linear Multivariable Regulators , 1980 .

[12]  L. Pernebo An algebraic theory for design of controllers for linear multivariable systems--Part I: Structure matrices and feedforward design , 1981 .

[13]  C. Desoer,et al.  Design of multivariable feedback systems with stable plant , 1981 .

[14]  J. Murray,et al.  Fractional representation, algebraic geometry, and the simultaneous stabilization problem , 1982 .

[15]  C. Desoer,et al.  Multivariable Feedback Systems , 1982 .

[16]  G. Zames,et al.  Multivariable feedback, sensitivity, and decentralized control , 1983 .

[17]  C. Desoer,et al.  Algebraic Theory of Linear Multivariable Feedback Systems , 1983, 1983 American Control Conference.

[18]  C. Desoer,et al.  Algebraic theory of linear multivariable feedback systems , 1984 .

[19]  M. Hautus,et al.  Decoupling of Multivariable Control Systems over Unique Factorization Domains , 1984 .

[20]  Heikki N. Koivo,et al.  Inverse Nyquist array technique in the design of a multivariable controller for a solid-fuel boiler , 1984 .

[21]  Mathukumalli Vidyasagar,et al.  Control System Synthesis , 1985 .

[22]  C. Desoer,et al.  Decoupling of Linear Multivariable Plants by Dynamical Output Feedback , 1985, 1985 American Control Conference.

[23]  S. P. Bhattacharyya,et al.  Structural synthesis of multivariable controllers , 1984, Autom..

[24]  J. Dion,et al.  On linear dynamic state feedback decoupling , 1985, 1985 24th IEEE Conference on Decision and Control.

[25]  C. Nett Algebraic aspects of linear control system stability , 1985, 1985 24th IEEE Conference on Decision and Control.

[26]  A. N. Gundes,et al.  Algebraic design of linear multivariable feedback systems , 1986 .