Global cooling after the eruption of Mount Pinatubo: a test of climate feedback by water vapor.

The sensitivity of Earth's climate to an external radiative forcing depends critically on the response of water vapor. We use the global cooling and drying of the atmosphere that was observed after the eruption of Mount Pinatubo to test model predictions of the climate feedback from water vapor. Here, we first highlight the success of the model in reproducing the observed drying after the volcanic eruption. Then, by comparing model simulations with and without water vapor feedback, we demonstrate the importance of the atmospheric drying in amplifying the temperature change and show that, without the strong positive feedback from water vapor, the model is unable to reproduce the observed cooling. These results provide quantitative evidence of the reliability of water vapor feedback in current climate models, which is crucial to their use for global warming projections.

[1]  R. Lindzen Some Coolness Concerning Global Warming , 1990 .

[2]  John R. Christy,et al.  THE IMPACT OF MOUNT PINATUBO ON WORLD‐WIDE TEMPERATURES , 1996 .

[3]  Jean-Philippe Duvel,et al.  Observed dependence of the water vapor and clear-sky greenhouse effect on sea surface temperature: comparison with climate warming experiments , 1995 .

[4]  J. Ashby References and Notes , 1999 .

[5]  Larry W. Thomason,et al.  Radiative forcing from the 1991 Mount Pinatubo volcanic eruption , 1998 .

[6]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[7]  M. Yao,et al.  Climatic implications of the seasonal variation of upper troposphere water vapor , 1994 .

[8]  Junye Chen,et al.  Evidence for Strengthening of the Tropical General Circulation in the 1990s , 2002, Science.

[9]  J. Bongaarts,et al.  Climate Change: The IPCC Scientific Assessment. , 1992 .

[10]  Robert Blair Vocci Geology , 1882, Nature.

[11]  Variations in the tropical greenhouse effect during El Nino , 1997 .

[12]  P. Gregory,et al.  February , 1890, The Hospital.

[13]  K. Trenberth,et al.  Earth's annual global mean energy budget , 1997 .

[14]  L. Larrabee Strow,et al.  An Intercomparison of Radiation Codes for Retrieving Upper-Tropospheric Humidity in the 6.3-μm Band: A Report from the First GVaP Workshop , 2000 .

[15]  John R. Christy,et al.  MSU Tropospheric Temperatures: Dataset Construction and Radiosonde Comparisons , 2000 .

[16]  F. Bretherton,et al.  Upper tropospheric relative humidity from the GOES 6.7 μm channel: method and climatology for July 1987 , 1993 .

[17]  P. Minnis,et al.  Radiative Climate Forcing by the Mount Pinatubo Eruption , 1993, Science.

[18]  S. Manabe,et al.  Cloud Feedback Processes in a General Circulation Model , 1988 .

[19]  V. Ramanathan,et al.  Observational determination of the greenhouse effect , 1989, Nature.

[20]  A. Robock Volcanic eruptions and climate , 2000 .

[21]  C. Rodgers,et al.  Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation , 1976 .

[22]  J. Crease The Dynamics of the Upper Ocean , 1967 .

[23]  G. Stephens,et al.  A new global water vapor dataset , 1996 .

[24]  B. Santer,et al.  Accounting for the effects of volcanoes and ENSO in comparisons of modeled and observed temperature trends , 2001 .

[25]  J. Houghton,et al.  Climate change 1995: the science of climate change. , 1996 .

[26]  D. A. Siegel,et al.  The North Atlantic Spring Phytoplankton Bloom and Sverdrup's Critical Depth Hypothesis , 2002, Science.

[27]  Paul Pellegrino,et al.  Monitoring the Mt. Pinatubo aerosol layer with NOAA/11 AVHRR data , 1992 .

[28]  V. Ramanathan,et al.  Tropical and global scale interactions among water vapor, atmospheric greenhouse effect, and surface temperature , 1998 .

[29]  John F. B. Mitchell,et al.  Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models , 1990 .

[30]  J. Lerner,et al.  Positive water vapour feedback in climate models confirmed by satellite data , 1991, Nature.

[31]  Makiko Sato,et al.  Potential climate impact of Mount Pinatubo eruption , 1992 .

[32]  Lena Iredell,et al.  Characteristics of the TOVS Pathfinder Path A Dataset , 1997 .

[33]  M. Patrick McCormick,et al.  The poleward dispersal of Mount Pinatubo volcanic aerosol , 1993 .

[34]  A. Robock,et al.  Climate model simulation of winter warming and summer cooling following the 1991 Mount Pinatubo volcanic eruption , 1999 .

[35]  Petra M. Udelhofen,et al.  Influence of tropical cloud systems on the relative humidity in the upper troposphere , 1995 .

[36]  S. Manabe,et al.  The Role of Water Vapor Feedback in Unperturbed Climate Variability and Global Warming , 1999 .

[37]  Frank J. Wentz,et al.  Precise climate monitoring using complementary satellite data sets , 2000, Nature.

[38]  B. Santer,et al.  Uncertainties in observationally based estimates of temperature change in the free atmosphere , 1999 .

[39]  K. Lau,et al.  Water vapor and cloud feedback over the tropical oceans: Can we use ENSO as a surrogate for climate change? , 1996 .