A Combinatorial Bijection on di-sk Trees

A di-sk tree is a rooted binary tree whose nodes are labeled by $\oplus$ or $\ominus$, and no node has the same label as its right child. The di-sk trees are in natural bijection with separable permutations. We construct a combinatorial bijection on di-sk trees proving  the two quintuples $(\mathrm{LMAX},\mathrm{LMIN},\mathrm{DESB},\mathsf{iar},\mathsf{comp})$ and $(\mathrm{LMAX},\mathrm{LMIN},\mathrm{DESB},\mathsf{comp},\mathsf{iar})$ have the same distribution over separable permutations. Here for a permutation $\pi$, $\mathrm{LMAX}(\pi)/\mathrm{LMIN}(\pi)$ is the set of values of the left-to-right maxima/minima of $\pi$ and $\mathrm{DESB}(\pi)$ is the set of descent bottoms of $\pi$, while $\mathsf{comp}(\pi)$ and $\mathsf{iar}(\pi)$ are respectively  the number of components of $\pi$ and the length of initial ascending run of $\pi$.  Interestingly, our bijection specializes to a bijection on $312$-avoiding permutations, which provides  (up to the classical Knuth–Richards bijection) an alternative approach to a result of Rubey (2016) that asserts the  two triples $(\mathrm{LMAX},\mathsf{iar},\mathsf{comp})$ and $(\mathrm{LMAX},\mathsf{comp},\mathsf{iar})$ are equidistributed  on $321$-avoiding permutations. Rubey's result is a symmetric extension of an equidistribution due to Adin–Bagno–Roichman, which implies the class of $321$-avoiding permutations with a prescribed number of components is Schur positive.  Some equidistribution results for various statistics concerning tree traversal are presented in the end.

[1]  Sergey Kitaev,et al.  Classification of bijections between 321- and 132-avoiding permutations , 2008, 0805.1325.

[2]  Sylvie Corteel,et al.  Patterns in Inversion Sequences I , 2015, Discret. Math. Theor. Comput. Sci..

[3]  Robert A. Sulanke,et al.  Bijections for the Schröder Numbers , 2000 .

[4]  Block decomposition of permutations and Schur-positivity , 2016, 1611.06979.

[5]  Zvezdelina Stankova,et al.  Forbidden subsequences , 1994, Discret. Math..

[6]  Julian West,et al.  Generating trees and the Catalan and Schröder numbers , 1995, Discret. Math..

[7]  L. Comtet,et al.  Advanced Combinatorics: The Art of Finite and Infinite Expansions , 1974 .

[8]  Dongsu Kim,et al.  A sextuple equidistribution arising in Pattern Avoidance , 2018, J. Comb. Theory, Ser. A.

[9]  Miklós Bóna,et al.  Combinatorics of permutations , 2022, SIGA.

[10]  Shishuo Fu,et al.  Refined Wilf-equivalences by Comtet statistics , 2020, ArXiv.

[11]  Christian Krattenthaler,et al.  Permutations with Restricted Patterns and Dyck Paths , 2000, Adv. Appl. Math..

[12]  Igor Pak,et al.  Bijections for refined restricted permutations , 2004, J. Comb. Theory, Ser. A.

[13]  Martin Rubey An involution on Dyck paths that preserves the rise composition and interchanges the number of returns and the position of the first double fall , 2017, 1701.07009.

[14]  Shishuo Fu,et al.  Two new unimodal descent polynomials , 2015 .

[15]  Mike D. Atkinson,et al.  Restricted permutations , 1999, Discret. Math..

[16]  Shishuo Fu,et al.  Bijective proofs of recurrences involving two Schröder triangles , 2020, Eur. J. Comb..

[17]  Louis W. Shapiro,et al.  Bootstrap Percolation, the Schröder Numbers, and the N-Kings Problem , 1991, SIAM J. Discret. Math..

[18]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..