Measurement of thermal properties of ferro siliceous sacrificial radiation shielding concrete using semi-infinite transient heat conduction model

[1]  A. R. Mohamed,et al.  Effect of hematite and iron slag as aggregate replacement on thermal, mechanical, and gamma-radiation shielding properties of concrete , 2021 .

[2]  T. Zhou,et al.  Measuring thermophysical properties of building insulation materials using transient plane heat source method , 2021 .

[3]  M. K. Saadi,et al.  Investigation on Concrete Neutron Shielding Properties Filled by B4C, CdO, and BN Microparticles , 2019, Moscow University Physics Bulletin.

[4]  M. Glinicki,et al.  Application of a non-stationary method in determination of the thermal properties of radiation shielding concrete with heavy and hydrous aggregate , 2019, International Journal of Heat and Mass Transfer.

[5]  M. Eftekhar,et al.  Investigation of gamma radiation attenuation in heavy concrete shields containing hematite and barite aggregates in multi-layered and mixed forms , 2018, Construction and Building Materials.

[6]  M. Papachristoforou,et al.  Radiation shielding and mechanical properties of steel fiber reinforced concrete (SFRC) produced with EAF slag aggregates , 2018 .

[7]  Wei Sun,et al.  Mechanical and thermal properties of graphene sulfonate nanosheet reinforced sacrificial concrete at elevated temperatures , 2017 .

[8]  Y. Grosu,et al.  Natural Magnetite for thermal energy storage: Excellent thermophysical properties, reversible latent heat transition and controlled thermal conductivity , 2017 .

[9]  Wei Sun,et al.  Mechanical and physicochemical properties of ferro-siliceous concrete subjected to elevated temperatures , 2016 .

[10]  E. Kavaz,et al.  Determination of gamma and fast neutron shielding parameters of magnetite concretes , 2016 .

[11]  Wei Sun,et al.  Thermal behavior of siliceous and ferro-siliceous sacrificial concrete subjected to elevated temperatures , 2016 .

[12]  Yunping Xi,et al.  Mesoscale model for thermal conductivity of concrete , 2015 .

[13]  Recep Yumrutaş,et al.  Mechanical and thermophysical properties of lightweight aggregate concretes , 2015 .

[14]  G. Sant,et al.  Effective thermal conductivity of three-component composites containing spherical capsules , 2014 .

[15]  M. Santhanam,et al.  An empirical approach for the optimisation of aggregate combinations for self-compacting concrete , 2012 .

[16]  O. Gencel,et al.  Determination and calculation of gamma and neutron shielding characteristics of concretes containing different hematite proportions , 2011 .

[17]  Masataka Kosaka,et al.  Simple measurement of thermal diffusivity and thermal conductivity using inverse solution for one-dimensional heat conduction , 2010 .

[18]  Mohammad Hassan Kharita,et al.  The effect of carbon powder addition on the properties of hematite radiation shielding concrete , 2009 .

[19]  Y. Xi,et al.  Composite Damage Models for Diffusivity of Distressed Materials , 2005 .

[20]  James K. Carson,et al.  Thermal conductivity bounds for isotropic, porous materials , 2005 .

[21]  Jin-keun Kim,et al.  An experimental study on thermal conductivity of concrete , 2003 .

[22]  Vlastimil Bohac,et al.  A step-wise method for measuring thermophysical parameters of materials , 2000 .

[23]  J. Lang,et al.  Simulation of the Transient Heating in an Unsymmetrical, Coated, Hot-Strip Sensor with a Self-Adaptive Finite-Element Method (SAFEM)1 , 1998 .

[24]  D.D.L. Chung,et al.  Effects of silica fume, latex, methylcellulose, and carbon fibers on the thermal conductivity and specific heat of cement paste , 1997 .

[25]  M. N. Khan,et al.  Transient hot-strip method for simultaneously measuring thermal conductivity and thermal diffusivity of solids and fluids , 1979 .

[26]  J. Cull Thermal conductivity probes for rapid measurements in rock , 1974 .

[27]  J. Mo,et al.  Thermal Conductivity of Magnetite and Hematite , 1971 .

[28]  M. Howlader,et al.  EFFECTS OF AGGREGATE TYPES ON THERMAL PROPERTIES OF CONCRETE , 2012 .

[29]  Iskender Akkurt,et al.  The shielding of γ-rays by concretes produced with barite , 2005 .

[30]  J. Sercombe,et al.  Behavior of High Performance Concrete Under High Temperature (60-450°C) for Surface Long-Term Storage: Thermo-Hydro-Mechanical Residual Properties , 2000 .