Decomposition of large-scale stochastic optimal control problems

In this paper, we present an Uzawa-based heuristic that is adapted to certain type of stochastic optimal control problems. More precisely, we consider dynamical systems that can be divided into smallscale subsystems linked through a static almost sure coupling constraint at each time step. This type of problem is common in production/ portfolio management where subsystems are, for instance, power units, and one has to supply a stochastic power demand at each time step. We outline the framework of our approach and present promising numerical results on a simplified power management problem.

[1]  Sean R Eddy,et al.  What is dynamic programming? , 2004, Nature Biotechnology.

[2]  Kengy Barty,et al.  A stochastic gradient type algorithm for closed-loop problems , 2009, Math. Program..

[3]  A. Turgeon Optimal operation of multireservoir power systems with stochastic inflows , 1980 .

[4]  Teemu Pennanen,et al.  Epi-Convergent Discretizations of Multistage Stochastic Programs , 2005, Math. Oper. Res..

[5]  Benjamin Van Roy,et al.  The Linear Programming Approach to Approximate Dynamic Programming , 2003, Oper. Res..

[6]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[7]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control 3rd Edition, Volume II , 2010 .

[8]  John N. Tsitsiklis,et al.  Feature-based methods for large scale dynamic programming , 2004, Machine Learning.

[9]  G. Cohen,et al.  Decomposition/coordination algorithms in stochastic optimization , 1990 .

[10]  V. Brunel,et al.  Ecole Nationale des Ponts et Chausses , 2009 .

[11]  John N. Tsitsiklis,et al.  Neuro-Dynamic Programming , 1996, Encyclopedia of Machine Learning.

[12]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[13]  Zvi Artstein,et al.  Sensitivity to σ-fields of information in stochastic allocation> , 1991 .

[14]  R. Bellman,et al.  FUNCTIONAL APPROXIMATIONS AND DYNAMIC PROGRAMMING , 1959 .

[15]  R. Wets,et al.  Stochastic programming , 1989 .

[16]  Julia L. Higle,et al.  Stopping Rules for Stochastic Decomposition , 1996 .

[17]  Alexander Shapiro,et al.  On complexity of multistage stochastic programs , 2006, Oper. Res. Lett..

[18]  P. Girardeau,et al.  A comparison of sample-based Stochastic Optimal Control methods , 2010, 1002.1812.

[19]  Cyrille Strugarek Approches variationnelles et autres contributions en optimisation stochastique , 2006 .

[20]  B. V. Dean,et al.  Studies in Linear and Non-Linear Programming. , 1959 .

[21]  Christian Küchler,et al.  On Stability of Multistage Stochastic Programs , 2008, SIAM J. Optim..

[22]  K. Kunisch,et al.  The augmented lagrangian method for parameter estimation in elliptic systems , 1990 .

[23]  J. Danskin The Theory of Max-Min and its Application to Weapons Allocation Problems , 1967 .

[24]  Peter Kall,et al.  Stochastic Programming , 1995 .

[25]  Alexander Shapiro,et al.  Solving multistage asset investment problems by the sample average approximation method , 2006, Math. Program..

[26]  G. Cohen Auxiliary problem principle and decomposition of optimization problems , 1980 .

[27]  A. Ruszczynski Stochastic Programming Models , 2003 .