Model and feature selection for the classification of dark field pollen images using the classifynder system

This paper explores the use of SURF features and local binary patterns, for the classification of extended depth of focus, dark field, pollen images. The paper outlines the image collection method, feature extraction process, and also compares the performance of a number of different classifiers across a range of data sets.

[1]  R.M. Hodgson,et al.  Machine vision for automated optical recognition and classification of pollen grains or other singulated microscopic objects , 2008, 2008 15th International Conference on Mechatronics and Machine Vision in Practice.

[2]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Antje Giebel,et al.  Discrimination of Common Ragweed (Ambrosia artemisiifolia) and Mugwort (Artemisia vulgaris) Based on Bag of Visual Words Model , 2017, Weed Technology.

[4]  Gabriel Cristóbal,et al.  Automated pollen identification using microscopic imaging and texture analysis. , 2015, Micron.

[5]  Arno Formella,et al.  Pollen classification using brightness-based and shape-based descriptors , 2004, ICPR 2004.

[6]  Gary R. Bradski,et al.  ORB: An efficient alternative to SIFT or SURF , 2011, 2011 International Conference on Computer Vision.

[7]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[8]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[9]  R. M. Hodgson,et al.  Progress towards an automated trainable pollen location and classifier system for use in the palynology laboratory , 2011 .

[10]  Yulia Arzhaeva,et al.  Pollen image classification using the Classifynder system: algorithm comparison and a case study on New Zealand honey. , 2015, Advances in experimental medicine and biology.

[11]  Stephen Marsland,et al.  Automatic Recognition of Light Microscope Pollen Images , 2006 .

[12]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[13]  Carlos M. Travieso,et al.  Pollen classification based on contour features , 2011, 2011 15th IEEE International Conference on Intelligent Engineering Systems.

[14]  Franck Marzani,et al.  Modular method of detection, localization, and counting of multiple-taxon pollen apertures using bag-of-words , 2014, J. Electronic Imaging.

[15]  Mark Bush,et al.  Pollen Grain Recognition Using Deep Learning , 2016, ISVC.

[16]  Hemerson Pistori,et al.  Supervised Machine Learning and Bag of Words applied to Polen Grains Classification , 2015, IEEE Latin America Transactions.

[17]  Emmanuelle Gouillart,et al.  scikit-image: image processing in Python , 2014, PeerJ.