Multiple criteria aggregation procedure for mixed evaluations

Most of the existing multiple criteria decision-making methods handle one kind of the information imperfections at the same time. Stochastic methods and fuzzy methods constitute typical examples of these methods. However, several multiple criteria modelizations include simultaneously many kinds of the information imperfections. In this work, we propose a multiple criteria aggregation procedure which accepts mixed evaluations, i.e. evaluations which contain different natures of imperfections. It is based on an adaptation of the stochastic dominance results.

[1]  Panos M. Pardalos,et al.  Advances in multicriteria analysis , 1995 .

[2]  P. Vincke,et al.  Note-A Preference Ranking Organisation Method: The PROMETHEE Method for Multiple Criteria Decision-Making , 1985 .

[3]  B. Roy,et al.  A Theoretical Framework for Analysing the Notion of Relative Importance of Criteria , 1996 .

[4]  Khaled Jabeur,et al.  An ordinal sorting method for group decision-making , 2007, Eur. J. Oper. Res..

[5]  Philippe Smets,et al.  Constructing the Pignistic Probability Function in a Context of Uncertainty , 1989, UAI.

[6]  Philippe Smets,et al.  Decision making in the TBM: the necessity of the pignistic transformation , 2005, Int. J. Approx. Reason..

[7]  Adel Guitouni,et al.  Managing a Decision Making Situation in the Context of the Canadian Airspace Protection , 1999 .

[8]  Vincent Mousseau,et al.  Eliciting Information Concerning the Relative Importance of Criteria , 1995 .

[9]  D. Dubois,et al.  On Possibility/Probability Transformations , 1993 .

[10]  Gérard Colson,et al.  The OR's prize winner and the software ARGOS: how a multijudge and multicriteria ranking GDSS helps a jury to attribute a scientific award , 2000, Comput. Oper. Res..

[11]  Bertrand Munier,et al.  Models and Experiments in Risk and Rationality , 1994 .

[12]  M. Roubens,et al.  Fuzzy logic : state of the art , 1993 .

[14]  Bernard Roy,et al.  Classement et choix en présence de points de vue multiples , 1968 .

[15]  Khaled Jabeur,et al.  A collective choice method based on individual preferences relational systems (p.r.s.) , 2007, Eur. J. Oper. Res..

[16]  李幼升,et al.  Ph , 1989 .

[17]  J. Martel,et al.  A Distance-Based Collective Preorder Integrating the Relative Importance of the Group's Members , 2004 .

[18]  Giuseppe Munda,et al.  Multicriteria Evaluation in a Fuzzy Environment , 1995 .

[19]  B. Roy Méthodologie multicritère d'aide à la décision , 1985 .

[20]  F. Choobineh,et al.  Stochastic dominance tests for ranking alternatives under ambiguity , 1996 .

[21]  Andrew P. Sage,et al.  Uncertainty in Artificial Intelligence , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[22]  K. Zaras,et al.  Stochastic dominance in multicriterion analysis under risk , 1995 .

[23]  R. Słowiński,et al.  Criterion of distance between technical programming and socio-economic priority , 1993 .

[24]  Jean-Marc Martel,et al.  A Distance-Based Collective Weak Ordering , 2001 .

[25]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[26]  Jean-Marc Martel,et al.  Multiattribute Analysis Based on Stochastic Dominance , 1994 .