Monitoring Ion Activities In and Around Cells Using Ion-Selective Liquid-Membrane Microelectrodes

Determining the effective concentration (i.e., activity) of ions in and around living cells is important to our understanding of the contribution of those ions to cellular function. Moreover, monitoring changes in ion activities in and around cells is informative about the actions of the transporters and/or channels operating in the cell membrane. The activity of an ion can be measured using a glass microelectrode that includes in its tip a liquid-membrane doped with an ion-selective ionophore. Because these electrodes can be fabricated with tip diameters that are less than 1 μm, they can be used to impale single cells in order to monitor the activities of intracellular ions. This review summarizes the history, theory, and practice of ion-selective microelectrode use and brings together a number of classic and recent examples of their usefulness in the realm of physiological study.

[1]  Pd Dr. Daniel Ammann Ion-Selective Microelectrodes , 1986, Advances in Exprerimental Medicine and Biology.

[2]  M. Romero,et al.  Euryhaline pufferfish NBCe1 differs from nonmarine species NBCe1 physiology. , 2012, American journal of physiology. Cell physiology.

[3]  B. Reid,et al.  Ion-selective self-referencing probes for measuring specific ion flux. , 2011, Communicative & integrative biology.

[4]  W. Boron,et al.  HCO3−‐independent conductance with a mutant Na+/HCO3− cotransporter (SLC4A4) in a case of proximal renal tubular acidosis with hypokalaemic paralysis , 2012, The Journal of physiology.

[5]  Y. Kondo,et al.  A new double-barrelled, ionophore-based microelectrode for chloride ions , 1989, Pflügers Archiv.

[6]  Jacob Kielland Individual Activity Coefficients of Ions in Aqueous Solutions , 1937 .

[7]  W. Boron,et al.  Intracellular pH transients in squid giant axons caused by CO2, NH3, and metabolic inhibitors , 1976, The Journal of general physiology.

[8]  D. Markovich Expression cloning and radiotracer uptakes in Xenopus laevis oocytes , 2008, Nature Protocols.

[9]  W. Simon,et al.  Valinomycin-based K+ selective microelectrodes with low electrical membrane resistance , 1987, Neuroscience Letters.

[10]  W. Boron,et al.  Relative CO2/NH3 selectivities of AQP1, AQP4, AQP5, AmtB, and RhAG , 2009, Proceedings of the National Academy of Sciences.

[11]  N. C. Hebert,et al.  Ion-Selective Microelectrodes , 1974, Advances in Experimental Medicine and Biology.

[12]  D. Ammann,et al.  Neutral carrier sodium ion-selective microelectrode for extracellular studies , 1985, Neuroscience Letters.

[13]  R. Tsien Fluorescent indicators of ion concentrations. , 1989, Methods in cell biology.

[14]  Y. Endo,et al.  Functional analysis of a novel missense NBC1 mutation and of other mutations causing proximal renal tubular acidosis , 2007, Pflügers Archiv - European Journal of Physiology.

[15]  J. Leung,et al.  The mechanism of ion conduction by valinomycin: analysis of charge pulse responses. , 1995, Biophysical journal.

[16]  R. Robertson,et al.  Protective effect of hypothermia on brain potassium homeostasis during repetitive anoxia in Drosophila melanogaster , 2012, Journal of Experimental Biology.

[17]  Y. Umezawa,et al.  Selectivity coefficients for ion-selective electrodes: Recommended methods for reporting KA,Bpot values (Technical Report) , 1995 .

[18]  R L Solsky,et al.  Ion-selective electrodes. , 1982, Analytical chemistry.

[19]  W. Boron,et al.  Comparison of microelectrode, DMO, and methylamine methods for measuring intracellular pH. , 1976, The American journal of physiology.

[20]  W. Boron,et al.  Characterization of Human SLC4A10 as an Electroneutral Na/HCO3 Cotransporter (NBCn2) with Cl– Self-exchange Activity* , 2008, Journal of Biological Chemistry.

[21]  M. Oehme,et al.  Microelectrode for potassium ions based on a neutral carrier and comparison of its characteristics with a cation exchanger sensor , 1976 .

[22]  M. Dobler,et al.  The crystal structure of a K+ complex of valinomycin. , 1975, Helvetica chimica acta.

[23]  Tae Ho Kim,et al.  Selective uranyl ion detection by polymeric ion-selective electrodes based on salphenH2 derivatives. , 2007, Talanta.

[24]  Maxime G. Blanchard,et al.  Measuring ion transport activities in Xenopus oocytes using the ion-trap technique. , 2008, American journal of physiology. Cell physiology.

[25]  W. Simon,et al.  Neutral carrier based hydrogen ion selective microelectrode for extra- and intracellular studies. , 1981, Analytical chemistry.

[26]  Sylvia Daunert,et al.  Microfluidic ion-sensing devices. , 2008, Analytica chimica acta.

[27]  M. Messerli,et al.  Principles, Development and Applications of Self-Referencing Electrochemical Microelectrodes to the Determination of Fluxes at Cell Membranes , 2007 .

[28]  B. Kräutler,et al.  Anion Selectivity of Metalloporphyrins in Membranes , 1986 .

[29]  M. Meyerhoff,et al.  Influence of porphyrin structure on anion selectivities of manganese(III) porphyrin based membrane electrodes. , 1988, Analytical Chemistry.

[30]  M. Messerli,et al.  Ion trapping with fast-response ion-selective microelectrodes enhances detection of extracellular ion channel gradients. , 2009, Biophysical journal.

[31]  J. A. Hinke Thirty years of ion-selective microelectrodes: disappointments and successes. , 1987, Canadian journal of physiology and pharmacology.

[32]  E. Pretsch,et al.  Lipophilic salts as membrane additives and their influence on the properties of macro- and micro-electrodes based on neutral carriers , 1985 .

[33]  L. D. Smith,et al.  Internal pH of Xenopus oocytes: a study of the mechanism and role of pH changes during meiotic maturation. , 1983, Developmental biology.

[34]  L. Reuss,et al.  Osmotic water permeability of Necturus gallbladder epithelium , 1989, The Journal of general physiology.

[35]  Mohammad Reza Ganjali,et al.  Developments in the Field of Conducting and Non-conducting Polymer Based Potentiometric Membrane Sensors for Ions Over the Past Decade , 2008, Sensors.

[36]  M. O'Donnell,et al.  Intracellular ion activities in Malpighian tubule cells of Rhodnius prolixus: evaluation of Na+-K+-2Cl- cotransport across the basolateral membrane. , 2002, The Journal of experimental biology.

[37]  J. Noebels Ion-Sensitive Intracellular Microelectrodes. How to Make and Use Them , 1979, The Yale Journal of Biology and Medicine.

[38]  M. Romero,et al.  Expression cloning and characterization of a renal electrogenic Na+ /HCO3 − cotransporter , 1997, Nature.

[39]  A. Bröer,et al.  Characterization of the monocarboxylate transporter 1 expressed in Xenopus laevis oocytes by changes in cytosolic pH. , 1998, The Biochemical journal.

[40]  Maxime G. Blanchard,et al.  Reply to Letter to the editor: 'The use of extracellular, ion-selective microelectrodes to study the function of heterologously expressed transporters in Xenopus oocytes''' , 2009 .

[41]  E. Boulpaep,et al.  Submicron tip breakage and silanization control improve ion-selective microelectrodes. , 1985, The American journal of physiology.

[42]  M. Chesler,et al.  Depolarization-induced acid secretion in gliotic hippocampal slices , 1994, Neuroscience.

[43]  J. Satoh,et al.  A Novel Missense Mutation in the Sodium Bicarbonate Cotransporter (NBCe1/SLC4A4) Causes Proximal Tubular Acidosis and Glaucoma through Ion Transport Defects* , 2004, Journal of Biological Chemistry.

[44]  R. Thomas Intracellular pH of snail neurones measured with a new pH‐sensitive glass micro‐electrode , 1974, The Journal of physiology.

[45]  C. Nicholson,et al.  Alkaline and acid transients in cerebellar microenvironment. , 1983, Journal of neurophysiology.

[46]  M. Chesler,et al.  Determination of extracellular bicarbonate and carbon dioxide concentrations in brain slices using carbonate and pH-selective microelectrodes , 1994, Journal of Neuroscience Methods.

[47]  M. Oehme,et al.  Neutral carrier sodium ion-selective microelectrode for intracellular studies , 1979 .

[48]  M. Romero,et al.  Effect of expressing the water channel aquaporin-1 on the CO2 permeability of Xenopus oocytes. , 1998, American journal of physiology. Cell physiology.

[49]  Monitoring Cl− Movement in Single Cells Exposed to Hypotonic Solution , 2005, The Journal of Membrane Biology.

[50]  P. Gehrig,et al.  Neutral-Carrier-Based Ion-Selective Microelectrodes Design and Application A Review , 1988 .

[51]  C. Maccà Response time of ion-selective electrodes: Current usage versus IUPAC recommendations , 2004 .

[52]  J. Voipio,et al.  Interstitial PCO2 and pH in rat hippocampal slices measured by means of a novel fast CO2/H+-sensitive microelectrode based on a PVC-gelled membrane , 1993, Pflügers Archiv.

[53]  K. Behar,et al.  Concentration-Dependent Effects on Intracellular and Surface pH of Exposing Xenopus oocytes to Solutions Containing NH3/NH4+ , 2009, Journal of Membrane Biology.

[54]  J. Lapointe,et al.  Determination of the Na(+)/glucose cotransporter (SGLT1) turnover rate using the ion-trap technique. , 2011, Biophysical journal.

[55]  Zed Rengel,et al.  Improved measurements of Na+ fluxes in plants using calixarene-based microelectrodes. , 2011, Journal of plant physiology.

[56]  J. Munoz,et al.  Silanization of glass in the making of ion-sensitive microelectrodes , 1983, Journal of Neuroscience Methods.

[57]  B. A. Vance,et al.  Microelectrode characterization of the basolateral membrane of rabbit S3 proximal tubule , 1989, The Journal of Membrane Biology.

[58]  M. Chesler,et al.  Depolarization-induced alkalinization of astrocytes in gliotic hippocampal slices , 1994, Neuroscience.

[59]  David Ogden,et al.  Microelectrode techniques : the Plymouth Workshop handbook , 1994 .

[60]  T. Moriuchi-Kawakami,et al.  Ion-selective electrodes based on L-tryptophan and L-tyrosine. , 2012, Talanta.

[61]  M. Romero,et al.  Expression cloning of a mammalian proton-coupled oligopeptide transporter , 1994, Nature.