Dynamic Modeling Application To Evaluate the Performance of Spathaspora passalidarum in Second-Generation Ethanol Production: Parametric Dynamics and the Likelihood Confidence Region

[1]  C. Wyman,et al.  The fate of lignin during hydrothermal pretreatment , 2013, Biotechnology for Biofuels.

[2]  Christopher J Marshall,et al.  Morphological and ecological similarities: wood-boring beetles associated with novel xylose-fermenting yeasts, Spathaspora passalidarum gen. sp. nov. and Candida jeffriesii sp. nov. , 2006, Mycological research.

[3]  Hengcai Zhang,et al.  Impact of oil price fluctuations on tanker maritime network structure and traffic flow changes , 2019, Applied Energy.

[4]  Guiwu Wei,et al.  Oil price fluctuation, stock market and macroeconomic fundamentals: Evidence from China before and after the financial crisis , 2019, Finance Research Letters.

[5]  George T. Tsao,et al.  Fermentation kinetics of ethanol production from glucose and xylose by recombinant Saccharomyces 1400(pLNH33) , 1999 .

[6]  Silvia Curteanu,et al.  The use of differential evolution algorithm for solving chemical engineering problems , 2016 .

[7]  X. Hou,et al.  Anaerobic xylose fermentation by Spathaspora passalidarum , 2011, Applied Microbiology and Biotechnology.

[8]  Hung Lee,et al.  Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. , 2007, Biotechnology advances.

[9]  E. Beale,et al.  Confidence Regions in Non‐Linear Estimation , 1960 .

[10]  Peter N. Ciesielski,et al.  Multiscale alterations in sugar cane bagasse and straw submitted to alkaline deacetylation. , 2018 .

[11]  C. Rosa,et al.  The yeasts of the genus Spathaspora: potential candidates for second‐generation biofuel production , 2018, Yeast.

[12]  A. Costa,et al.  Fermentation strategy for second generation ethanol production from sugarcane bagasse hydrolyzate by Spathaspora passalidarum and Scheffersomyces stipitis , 2017, Biotechnology and bioengineering.

[13]  Gilson Campani,et al.  A hierarchical state estimation and control framework for monitoring and dissolved oxygen regulation in bioprocesses , 2019, Bioprocess and Biosystems Engineering.

[14]  S. Sawayama,et al.  Ethanol Production from Xylo-oligosaccharides by Xylose-Fermenting Saccharomyces cerevisiae Expressing β-Xylosidase , 2011, Bioscience, biotechnology, and biochemistry.

[15]  B. Hahn-Hägerdal,et al.  High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae , 2007, Applied Microbiology and Biotechnology.

[16]  J. Stelling,et al.  Computational design tools for synthetic biology. , 2009, Current opinion in biotechnology.

[17]  R. C. Kuhad,et al.  Bioethanol production from pentose sugars: Current status and future prospects , 2011 .

[18]  N A W van Riel,et al.  Parameter uncertainty in biochemical models described by ordinary differential equations. , 2013, Mathematical biosciences.

[19]  T. Jeffries,et al.  Cofermentation of Glucose, Xylose, and Cellobiose by the Beetle-Associated Yeast Spathaspora passalidarum , 2012, Applied and Environmental Microbiology.

[20]  Carlos Martín,et al.  Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. , 2016, Bioresource technology.

[21]  E. Biscaia,et al.  Nonlinear parameter estimation through particle swarm optimization , 2008 .

[22]  R. R. Andrade,et al.  Kinetic Modeling of Ethanol Production by Scheffersomyces stipitis from Xylose , 2013, Applied Biochemistry and Biotechnology.

[23]  P. Unrean,et al.  Optimized Fed-Batch Fermentation of Scheffersomyces stipitis for Efficient Production of Ethanol from Hexoses and Pentoses , 2013, Applied Biochemistry and Biotechnology.

[24]  R. Johnston Arsenic and the 2030 Agenda for Sustainable Development , 2016 .

[25]  Irwin Guttman,et al.  Confidence intervals versus regions , 1995 .

[26]  Sebastião Feyo de Azevedo,et al.  Hybrid semi-parametric modeling in process systems engineering: Past, present and future , 2014, Comput. Chem. Eng..

[27]  M. Wallner,et al.  Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization , 2010, Microbial cell factories.

[28]  Mats Jirstrand,et al.  Systems biology Systems Biology Toolbox for MATLAB : a computational platform for research in systems biology , 2006 .

[29]  Richard F. Gunst,et al.  Applied Regression Analysis , 1999, Technometrics.

[30]  L. G. T. Carpio The effects of oil price volatility on ethanol, gasoline, and sugar price forecasts , 2019, Energy.

[31]  Chongyang Liu,et al.  From the SelectedWorks of Chongyang Liu 2013 Modelling and parameter identification for a nonlinear time-delay system in microbial batch fermentation , 2017 .

[32]  Robert B. Schnabel,et al.  Computational Experience With Confidence Regions and Confidence Intervals for Nonlinear Least Squares , 1986 .

[33]  C. Aloui,et al.  COVID-19 pandemic, oil prices, stock market, geopolitical risk and policy uncertainty nexus in the US economy: Fresh evidence from the wavelet-based approach , 2020, International Review of Financial Analysis.

[34]  Dan Denny Competitive renewables as the key to energy transition—RenovaBio: the Brazilian biofuel regulation , 2020 .

[35]  J. Varner,et al.  Large-scale prediction of phenotype: concept. , 2000, Biotechnology and bioengineering.

[36]  J. C. Gentina,et al.  Development of an acetic acid tolerant Spathaspora passalidarum strain through evolutionary engineering with resistance to inhibitors compounds of autohydrolysate of Eucalyptus globulus , 2017 .

[37]  F. Squina,et al.  Biorefinery Platform for Spathaspora passalidarum NRRL Y-27907 in the Production of Ethanol, Xylitol, and Single Cell Protein from Sugarcane Bagasse , 2021, BioEnergy Research.

[38]  Jonathan M. Garibaldi,et al.  Parameter Estimation Using Metaheuristics in Systems Biology: A Comprehensive Review , 2012, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[39]  Primary Metabolic Pathways and Metabolic Flux Analysis , 2015 .

[40]  Yun-Joong Kwon,et al.  Kinetic models for growth and product formation on multiple substrates , 2005 .

[41]  D. Xiao,et al.  Efficient utilization of hemicellulose and cellulose in alkali liquor-pretreated corncob for bioethanol production at high solid loading by Spathaspora passalidarum U1-58. , 2017, Bioresource technology.

[42]  Matthias Reuss,et al.  Optimal re-design of primary metabolism in Escherichia coli using linlog kinetics. , 2004, Metabolic engineering.

[43]  Elmer Ccopa Rivera,et al.  Study of kinetic parameters in a mechanistic model for bioethanol production through a screening technique and optimization , 2009, Bioprocess and biosystems engineering.

[44]  Luca Podofillini,et al.  Model parameters estimation and sensitivity by genetic algorithms , 2003 .

[45]  E. R. Morais,et al.  A differential evolution approach to estimate parameters in a temperature-dependent kinetic model for second generation ethanol production under high cell density with Spathaspora passalidarum , 2020 .

[46]  C. Rosa,et al.  Diversity and Physiological Characterization of D-Xylose-Fermenting Yeasts Isolated from the Brazilian Amazonian Forest , 2012, PloS one.

[47]  In Iok Kong,et al.  Construction of an efficient xylose-fermenting diploid Saccharomyces cerevisiae strain through mating of two engineered haploid strains capable of xylose assimilation. , 2013, Journal of biotechnology.

[48]  Yun Hu,et al.  Construction of a xylose-fermenting Saccharomyces cerevisiae strain by combined approaches of genetic engineering, chemical mutagenesis and evolutionary adaptation , 2010 .

[49]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[50]  Michael C Neale,et al.  Likelihood-Based Confidence Intervals for a Parameter With an Upper or Lower Bound , 2017, Structural equation modeling : a multidisciplinary journal.

[51]  A. Bonomi,et al.  Effect of temperature on sugarcane ethanol fermentation: Kinetic modeling and validation under very-high-gravity fermentation conditions , 2017 .

[52]  Rafael S. Costa,et al.  Kinetic modeling of cell metabolism for microbial production. , 2016, Journal of biotechnology.

[53]  N. L. Mohamad,et al.  Dynamic mathematical modelling of reaction kinetics for xylitol fermentation using Candida tropicalis , 2016 .

[54]  S. C. Rabelo,et al.  Effect of the Sugarcane Bagasse Deacetylation in the Pentoses Fermentation Process , 2021, BioEnergy Research.