The origin of the initial mass function and its dependence on the mean Jeans mass in molecular clouds

We investigate the dependence of stellar properties on the mean thermal Jeans mass in molecular clouds. We compare the results from the two largest hydrodynamical simulations of star formation to resolve the fragmentation process down to the opacity limit, the first of which was reported by Bate, Bonnell & Bromm. The initial conditions of the two calculations are identical except for the radii of the clouds, which are chosen so that the mean densities and mean thermal Jeans masses of the clouds differ by factors of 9 and 3, respectively. We find that the denser cloud, with the lower mean thermal Jeans mass, produces a higher proportion of brown dwarfs and has a lower characteristic (median) mass of the stars and brown dwarfs. This dependence of the initial mass function (IMF) on the density of the cloud may explain the observation that the Taurus star-forming region appears to be deficient in brown dwarfs when compared with the Orion Trapezium cluster. The new calculation also produces wide binaries (separations >20 au), one of which is a wide binary brown dwarf system. Based on the hydrodynamical calculations, we develop a simple accretion/ejection model for the origin of the IMF. In the model, all stars and brown dwarfs begin with the same mass (set by the opacity limit for fragmentation) and grow in mass until their accretion is terminated stochastically by their ejection from the cloud through dynamically interactions. The model predicts that the main variation of the IMF in different star-forming environments should be in the location of the peak (due to variations in the mean thermal Jeans mass of the cloud) and in the substellar regime. However, the slope of the IMF at high masses may depend on the dispersion in the accretion rates of protostars. Ke yw ords: accretion, accretion discs ‐ hydrodynamics ‐ binaries: general ‐ stars: formation ‐ stars: low-mass, brown dwarfs ‐ stars: luminosity function, mass function.

[1]  S. Hodgkin,et al.  On the properties of young multiple stars , 2004, astro-ph/0403094.

[2]  A Theory of the IMF for Star Formation in Molecular Clouds , 1996, astro-ph/9601139.

[3]  R. Larson Calculations of three-dimensional collapse and fragmentation , 1978 .

[4]  E. Guenther,et al.  UVES spectra of young brown dwarfs in Cha I: Radial and rotational velocities ? , 2001, astro-ph/0110175.

[5]  C. Lada,et al.  The discovery of new embedded sources in the centrally condensed core of the Rho Ophiuchi dark cloud - The formation of a bound cluster , 1983 .

[6]  James M. Stone,et al.  Density, Velocity, and Magnetic Field Structure in Turbulent Molecular Cloud Models , 2000, astro-ph/0008454.

[7]  P. Padoan,et al.  The Stellar Initial Mass Function from Turbulent Fragmentation , 2000, astro-ph/0011465.

[8]  B. Jones,et al.  The universality of the stellar initial mass function , 1997 .

[9]  R. Henriksen Star formation in giant molecular clouds , 1986 .

[10]  B. Jones,et al.  Proper motions of T Tauri variables and other stars associated with the Taurus-Auriga dark clouds. , 1979 .

[11]  R. Henriksen On molecular cloud scaling laws and star formation , 1991 .

[12]  I. Bonnell,et al.  The hierarchical formation of a stellar cluster , 2003, astro-ph/0305082.

[13]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[14]  Accretion and dynamical interactions in small-N star-forming clusters: N = 5 , 2003, astro-ph/0304091.

[15]  Eduardo L. Martin,et al.  Multiplicity of Nearby Free-floating Ultracool Dwarfs: A Hubble Space Telescope WFPC2 Search for Companions , 2003, astro-ph/0305484.

[16]  An explanation for the unusual IMF in Taurus , 2004, astro-ph/0403028.

[17]  H. Zinnecker Star formation from hierarchical cloud fragmentation - A statistical theory of the log-normal Initial Mass Function , 1984 .

[18]  I. Baraffe,et al.  A Hubble Space Telescope Wide Field Planetary Camera 2 Survey for Brown Dwarf Binaries in the α Persei and Pleiades Open Clusters , 2003 .

[19]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[20]  P. Bodenheimer,et al.  PROTOSTELLAR FRAGMENTATION IN A POWER-LAW DENSITY DISTRIBUTION , 1997, astro-ph/9706092.

[21]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[22]  B. Elmegreen The Stellar Initial Mass Function from Random Sampling in Hierarchical Clouds. II. Statistical Fluctuations and a Mass Dependence for Starbirth Positions and Times , 1998, astro-ph/9811287.

[23]  J. Silk On the fragmentation of cosmic gas clouds. III - The initial stellar mass function , 1977 .

[24]  L. Close,et al.  An Adaptive Optics Survey of M8-M9 Stars: Discovery of Four Very Low Mass Binaries with at Least One System Containing a Brown Dwarf Companion , 2002, astro-ph/0201393.

[25]  C. Clarke,et al.  Accretion in stellar clusters and the initial mass function , 2001 .

[26]  E. Ostriker,et al.  Dissipation in Compressible Magnetohydrodynamic Turbulence , 1998, astro-ph/9809357.

[27]  C. Hunter The collapse of unstable isothermal spheres. , 1977 .

[28]  A. Boss Protostellar formation in rotating interstellar clouds. VII. Opacity and fragmentation , 1988 .

[29]  D. Lynden-Bell,et al.  The minimum Jeans mass or when fragmentation must stop. , 1976 .

[30]  Michael L. Norman,et al.  The Formation of Self-Gravitating Cores in Turbulent Magnetized Clouds , 2003, astro-ph/0312622.

[31]  B. Jones,et al.  Proper Motions and Variabilities of Stars Near the Orion Nebula , 1988 .

[32]  I. Bonnell,et al.  The formation of close binary systems by dynamical interactions and orbital decay , 2002, astro-ph/0212403.

[33]  L. Hartmann,et al.  Rapid Formation of Molecular Clouds and Stars in the Solar Neighborhood , 2001, astro-ph/0108023.

[34]  S. J. Chapman,et al.  Binary star formation: accretion-induced rotational fragmentation , 1995 .

[35]  The formation of close binary systems , 1994, astro-ph/9411081.

[36]  F. Hoyle On the Fragmentation of Gas Clouds Into Galaxies and Stars. , 1953 .

[37]  The Formation of Stellar Clusters: Gaussian Cloud Conditions. II. , 2000, astro-ph/0006016.

[38]  Y. Yoshii,et al.  A Fragmentation-Coalescence Model for the Initial Stellar Mass Function: Preliminary Results , 1985 .

[39]  I. Bonnell,et al.  Star formation in transient molecular clouds , 2003, astro-ph/0311286.

[40]  Volker Bromm,et al.  The formation of a star cluster: predicting the properties of stars and brown dwarfs , 2002, astro-ph/0212380.

[41]  A. Dupree,et al.  Formation and evolution of low mass stars , 1988 .

[42]  Martin J. Rees,et al.  Opacity-Limited Hierarchical Fragmentation and the Masses of Protostars , 1976 .

[43]  Shu-ichiro Inutsuka,et al.  Does “τ≈1” Terminate the Isothermal Evolution of Collapsing Clouds? , 1999 .

[44]  E. Lada Global Star Formation in the L1630 Molecular Cloud , 1992 .

[45]  J. Silk,et al.  A statistical model for the initial stellar mass function , 1979 .

[46]  R. Klessen,et al.  THE FORMATION OF STELLAR CLUSTERS: GAUSSIAN CLOUD CONDITIONS. I , 2022 .

[47]  I. A. Bonnell,et al.  Modelling accretion in protobinary systems , 1995 .

[48]  H. Martel,et al.  Fragmentation of elongated cylindrical clouds. I. Isothermal clouds , 1991 .

[49]  J. Silk A Theory for the Initial Mass Function , 1995 .

[50]  A. Boss Formation of Planetary-Mass Objects by Protostellar Collapse and Fragmentation , 2001 .

[51]  Andreas Burkert,et al.  Fragmentation of Molecular Clouds: The Initial Phase of a Stellar Cluster , 1998 .

[52]  Andrea Richichi,et al.  A lunar occultation and direct imaging survey of multiplicity in the Ophiuchus and Taurus star-forming regions , 1995 .

[53]  Ralf Klessen,et al.  (ACCEPTED FOR PUBLICATION IN APJ) Preprint typeset using L ATEX style emulateapj v. 04/03/99 THE FORMATION OF STELLAR CLUSTERS: MASS SPECTRA FROM TURBULENT MOLECULAR CLOUD , 2001 .

[54]  J. R. Buchler,et al.  The numerical modelling of nonlinear stellar pulsations: problems and prospects. Proceedings. , 1990 .

[55]  I. Bonnell,et al.  Massive circumbinary discs and the formation of multiple systems , 1994 .

[56]  L. Hartmann,et al.  A proper motion survey for pre-main-sequence stars in Taurus-Auriga , 1991 .

[57]  I. Bonnell A new binary formation mechanism , 1994 .

[58]  P. Foster,et al.  Gravitational collapse of an isothermal sphere , 1992 .

[59]  F. Shu Self-similar collapse of isothermal spheres and star formation. , 1977 .

[60]  Lynne A. Hillenbrand,et al.  The Spectroscopically Determined Substellar Mass Function of the Orion Nebula Cluster , 2004 .

[61]  The dependence of the substellar initial mass function on the initial conditions for star formation , 2003, astro-ph/0310406.

[62]  W. Benz Smooth Particle Hydrodynamics: A Review , 1990 .

[63]  I. Bonnell,et al.  Accretion in stellar clusters and the collisional formation of massive stars , 2002 .

[64]  C. Clarke,et al.  Competitive accretion in embedded stellar clusters , 2001, astro-ph/0102074.

[65]  The first discovery of a wide binary brown dwarf , 2004, astro-ph/0407344.

[66]  Binarity in Brown Dwarfs: T Dwarf Binaries Discovered with the Hubble Space Telescope Wide Field P , 2002, astro-ph/0211470.

[67]  Andreas Burkert,et al.  Kinetic Energy Decay Rates of Supersonic and Super-Alfvénic Turbulence in Star-Forming Clouds , 1998 .

[68]  A Search for L Dwarf Binary Systems , 2000, astro-ph/0010202.

[69]  C. Clarke,et al.  Accretion and the stellar mass spectrum in small clusters , 1997 .

[70]  William H. Press,et al.  Dynamic mass exchange in doubly degenerate binaries I , 1990 .

[71]  B. Reipurth,et al.  The Formation of Brown Dwarfs as Ejected Stellar Embryos , 2001, astro-ph/0103019.

[72]  Glenn E. Miller,et al.  The Initial mass function and stellar birthrate in the solar neighborhood , 1979 .

[73]  G. Knapp,et al.  Hubble Space Telescope Observations of Binary Very Low Mass Stars and Brown Dwarfs , 2003, astro-ph/0302526.

[74]  P. Myers Growth of an Initial Mass Function Cluster in a Turbulent Dense Core. , 2000, The Astrophysical journal.

[75]  J. Silk On the fragmentation of cosmic gas clouds. II - Opacity-limited star formation , 1977 .

[76]  F. V. Leeuwen,et al.  Proper motions of stars in the region of the Orion Nebula cluster (C 0532{054) ? , 1996 .

[77]  P. Hennebelle,et al.  Protostellar collapse induced by compression – II. Rotation and fragmentation , 2004 .

[78]  John C. Wilson,et al.  � 2001. The American Astronomical Society. All rights reserved. Printed in U.S.A. SUBSTELLAR COMPANIONS TO MAIN-SEQUENCE STARS: NO BROWN DWARF DESERT AT WIDE SEPARATIONS , 2022 .

[79]  R. Larson The role of tidal interactions in star formation , 2001, astro-ph/0108471.

[80]  C. Clarke,et al.  Star–disc interactions and binary star formation , 1991 .

[81]  Lynne A. Hillenbrand,et al.  Constraints on the Stellar/Substellar Mass Function in the Inner Orion Nebula Cluster , 2000 .

[82]  M. Bate,et al.  Resolution requirements for smoothed particle hydrodynamics calculations with self-gravity , 1997 .

[83]  Hans Zinnecker,et al.  On the formation of massive stars , 1998 .

[84]  H. Zinnecker PREDICTION OF THE PROTOSTELLAR MASS SPECTRUM IN THE ORION NEAR‐INFRARED CLUSTER , 1982 .

[85]  J. Monaghan,et al.  Shock simulation by the particle method SPH , 1983 .

[86]  R. Paul Butler,et al.  Planets Orbiting Other Suns , 2000 .

[87]  J. Gaustad THE OPACITY OF DIFFUSE COSMIC MATTER AND THE EARLY STAGES OF STAR FORMATION , 1963 .

[88]  M. Bate Predicting the properties of binary stellar systems: the evolution of accreting protobinary systems , 2000, astro-ph/0002143.

[89]  J. Scalo,et al.  Simulation models for the evolution of cloud systems. I Introduction and preliminary simulations , 1983 .

[90]  L. Lucy The Formation of Binary Stars , 1981 .

[91]  L. Hartmann,et al.  The Initial Mass Function in the Taurus Star-forming Region , 2002 .

[92]  A. Whitworth The Jeans instability in smoothed particle hydrodynamics , 1998 .

[93]  J. Pringle On the formation of binary stars , 1989 .

[94]  Donald W. McCarthy,et al.  The Multiplicity of Pre-Main-Sequence Stars in Southern Star-forming Regions , 1997 .

[95]  Laird M. Close,et al.  Detection of Nine M8.0-L0.5 Binaries: The Very Low Mass Binary Population and Its Implications for Brown Dwarf and Very Low Mass Star Formation , 2003, astro-ph/0301095.

[96]  F. Adams,et al.  Beginning and End of a Low-Mass Protostar , 1988 .

[97]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[98]  R. Klein,et al.  The Jeans Condition and Collapsing Molecular Cloud Cores: Filaments or Binaries? , 2000 .

[99]  R. Larson Turbulence and star formation in molecular clouds , 1980 .

[100]  The initial mass function of low-mass stars and brown dwarfs in young clusters , 2000, astro-ph/0004386.

[101]  Richard I. Klein,et al.  The Jeans Condition: A New Constraint on Spatial Resolution in Simulations of Isothermal Self-Gravitational Hydrodynamics , 1997 .

[102]  Bruce G. Elmegreen,et al.  The Initial Stellar Mass Function from Random Sampling in a Turbulent Fractal Cloud , 1997 .

[103]  A Preliminary Study of the Orion Nebula Cluster Structure and Dynamics , 1998 .

[104]  B. Elmegreen Star Formation in a Crossing Time , 1999, astro-ph/9911172.

[105]  Eduardo Martin,et al.  PPl 15: The First Brown Dwarf Spectroscopic Binary , 1999, astro-ph/9908015.

[106]  S. Miyama,et al.  Self-similar Solutions and the Stability of Collapsing Isothermal Filaments , 1992 .

[107]  R. Mathieu,et al.  Monte Carlo simulations of the initial stellar mass function , 1983 .

[108]  R. Larson A Simple Probabilistic Theory of Fragmentation , 1973 .

[109]  I. Bonnell,et al.  The formation mechanism of brown dwarfs , 2002, astro-ph/0206365.

[110]  Richard B. Larson,et al.  Towards understanding the stellar initial mass function , 1992 .

[111]  G. Neugebauer,et al.  The multiplicity of T Tauri stars in the star forming regions Taurus-Auriga and Ophiuchus-Scorpius: A 2.2 micron speckle imaging survey , 1993 .

[112]  C. E. Jones,et al.  On the power-law tail in the mass function of protostellar condensations and stars , 2003, astro-ph/0311365.