Molecular markers based on LTR retrotransposons BARE-1 and Jeli uncover different strata of evolutionary relationships in diploid wheats

[1]  S. S. Patil,et al.  Genetic variability in sunflower (Helianthus annuus L.) , 2010 .

[2]  N. Goncharov,et al.  Taxonomy and molecular phylogeny of natural and artificial wheat species , 2009 .

[3]  N. Goncharov,et al.  Phylogeny of the a genomes of wild and cultivated wheat species , 2009, Russian Journal of Genetics.

[4]  A. Moya,et al.  Network dynamics of eukaryotic LTR retroelements beyond phylogenetic trees , 2009, Biology Direct.

[5]  M. Platzer,et al.  A whole-genome snapshot of 454 sequences exposes the composition of the barley genome and provides evidence for parallel evolution of genome size in wheat and barley. , 2009, The Plant journal : for cell and molecular biology.

[6]  A. Schulman,et al.  Genetic variability in sunflower (Helianthus annuus L.) and in the Helianthus genus as assessed by retrotransposon-based molecular markers , 2009, Theoretical and Applied Genetics.

[7]  D. Lisch Epigenetic regulation of transposable elements in plants. , 2009, Annual review of plant biology.

[8]  G. Muehlbauer,et al.  Genetics and Genomics of the Triticeae , 2009 .

[9]  R. Bothmer,et al.  Scientific Names in the Triticeae , 2009 .

[10]  S. Cannon,et al.  An analysis of synteny of Arachis with Lotus and Medicago sheds new light on the structure, stability and evolution of legume genomes , 2009, BMC Genomics.

[11]  A. Couloux,et al.  Dynamics and Differential Proliferation of Transposable Elements During the Evolution of the B and A Genomes of Wheat , 2008, Genetics.

[12]  S. Haldorsen,et al.  Reassessing domestication events in the Near East: Einkorn and Triticum urartu. , 2008, Genome.

[13]  M. A. Martín,et al.  Polymorphisms at the Gli-Au1 and Gli-Au2 loci in wild diploid wheat (Triticum urartu) , 2008, Euphytica.

[14]  B. Kilian,et al.  Molecular diversity at 18 loci in 321 wild and 92 domesticate lines reveal no reduction of nucleotide diversity during Triticum monococcum (Einkorn) domestication: implications for the origin of agriculture. , 2007, Molecular biology and evolution.

[15]  J. Bennetzen,et al.  A unified classification system for eukaryotic transposable elements , 2007, Nature Reviews Genetics.

[16]  N. Goncharov,et al.  Comparative genetic analysis of diploid naked wheat Triticum sinskajae and the progenitor T. monococcum accession , 2007, Russian Journal of Genetics.

[17]  Jinfeng Chen,et al.  Ty1-copia retrotransposon-based SSAP marker development and its potential in the genetic study of cucurbits. , 2007, Genome.

[18]  A. Flavell,et al.  Genetic diversity analysis in Vicia species using retrotransposon-based SSAP markers , 2007, Molecular Genetics and Genomics.

[19]  P. Gresshoff,et al.  Silver staining DNA in polyacrylamide gels , 2007, Nature Protocols.

[20]  A. Schulman Molecular markers to assess genetic diversity , 2007, Euphytica.

[21]  N. Goncharov,et al.  Molecular phylogeny of the genus Triticum L , 2007, Plant Systematics and Evolution.

[22]  F. Sabot,et al.  Morgane, a new LTR retrotransposon group, and its subfamilies in wheats , 2006, Genetica.

[23]  A. Brandolini,et al.  Quantification of genetic relationships among A genomes of wheats. , 2006, Genome.

[24]  D. Huson,et al.  Application of phylogenetic networks in evolutionary studies. , 2006, Molecular biology and evolution.

[25]  Danny A. P. Hooftman,et al.  A detailed linkage map of lettuce based on SSAP, AFLP and NBS markers , 2006, Theoretical and Applied Genetics.

[26]  K. Yamane,et al.  Intra- and interspecific phylogenetic relationships among diploid Triticum-Aegilops species (Poaceae) based on base-pair substitutions, indels, and microsatellites in chloroplast noncoding sequences. , 2005, American journal of botany.

[27]  A. Flavell,et al.  Insertional Polymorphism and Antiquity of PDR1 Retrotransposon Insertions in Pisum Species , 2005, Genetics.

[28]  A. Flavell,et al.  Ty1-copia retrotransposon-based SSAP marker development in cashew (Anacardium occidentale L.) , 2005, Theoretical and Applied Genetics.

[29]  M. Grandbastien,et al.  Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR , 2005, Theoretical and Applied Genetics.

[30]  R. Wing,et al.  Sequence composition and genome organization of maize. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[31]  E. Kochieva,et al.  Efficient targeting of plant disease resistance loci using NBS profiling , 2004, Theoretical and Applied Genetics.

[32]  T. Endo,et al.  Genetic diversity of wheat wild relatives in the Near East detected by AFLP , 2002, Euphytica.

[33]  N. Weeden,et al.  Linkage among isozyme, RFLP and RAPD markers in Vicia faba , 1993, Theoretical and Applied Genetics.

[34]  R. Hellens,et al.  A copia-like element in Pisum demonstrates the uses of dispersed repeated sequences in genetic analysis , 1990, Plant Molecular Biology.

[35]  J. Bennetzen,et al.  Transposable element contributions to plant gene and genome evolution , 2004, Plant Molecular Biology.

[36]  A. Flavell,et al.  The chromosomal distributions of Ty1-copia group retrotransposable elements in higher plants and their implications for genome evolution , 2004, Genetica.

[37]  A. Flavell,et al.  Retrotransposon-based molecular markers for linkage and genetic diversity analysis in wheat , 2004, Molecular Genetics and Genomics.

[38]  M. Knox,et al.  Transposable elements reveal the impact of introgression, rather than transposition, in Pisum diversity, evolution, and domestication. , 2003, Molecular biology and evolution.

[39]  T. Wicker,et al.  TREP: a database for Triticeae repetitive elements , 2002 .

[40]  Cédric Feschotte,et al.  Plant transposable elements: where genetics meets genomics , 2002, Nature Reviews Genetics.

[41]  H. Hirochika,et al.  Applications of retrotransposons as genetic tools in plant biology. , 2001, Trends in plant science.

[42]  Ø. Hammer,et al.  PAST: PALEONTOLOGICAL STATISTICAL SOFTWARE PACKAGE FOR EDUCATION AND DATA ANALYSIS , 2001 .

[43]  O Hammer-Muntz,et al.  PAST: paleontological statistics software package for education and data analysis version 2.09 , 2001 .

[44]  A. Flavell,et al.  Pea Ty1-copia group retrotransposons: transpositional activity and use as markers to study genetic diversity in Pisum , 2000, Molecular and General Genetics MGG.

[45]  A. Flavell,et al.  Phylogeny and transpositional activity of Ty1-copia group retrotransposons in cereal genomes , 1999, Molecular and General Genetics MGG.

[46]  J. Bennetzen,et al.  Plant retrotransposons. , 1999, Annual review of genetics.

[47]  A. Flavell,et al.  Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. , 1998, The Plant journal : for cell and molecular biology.

[48]  M. Knox,et al.  Polymorphism of insertion sites of Ty1-copia class retrotransposons and its use for linkage and diversity analysis in pea , 1998, Molecular and General Genetics MGG.

[49]  F. Salamini,et al.  SITE OF EINKORN WHEAT DOMESTICATION IDENTIFIED BY DNA FINGERPRINTING , 1997 .

[50]  K. McLean,et al.  Genetic distribution of Bare–1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP) , 1997, Molecular and General Genetics MGG.

[51]  H. Saedler,et al.  Restriction fragment length polymorphism-coupled domain-directed differential display: a highly efficient technique for expression analysis of multigene families. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[52]  G. Natsoulis,et al.  Hotspots for unselected Ty1 transposition events on yeast chromosome III are near tRNA genes and LTR sequences , 1993, Cell.

[53]  D. Chalker,et al.  Transfer RNA genes are genomic targets for de Novo transposition of the yeast retrotransposon Ty3. , 1990, Genetics.

[54]  Maria Hopf,et al.  Domestication of plants in the old world , 1988 .

[55]  E. R. Sears The aneuploids of common wheat , 1954 .

[56]  L. R. Dice Measures of the Amount of Ecologic Association Between Species , 1945 .