Plateau Connection Structure and multiobjective metaheuristic performance

This paper proposes the plateau structure imposed by the Pareto dominance relation as a useful determinant of multiobjective metaheuristic performance. In essence, the dominance relation partitions the search space into a set of equivalence classes, and the probabilities, given a specified neighborhood structure, of moving from one class to another are estimated empirically and used to help assess the likely performance of different flavors of multiobjective search algorithms. The utility of this approach is demonstrated on a number of benchmark multiobjective combinatorial optimization problems. In addition, a number of techniques are proposed to allow this method to be used with larger, real-world problems.

[1]  Kenneth D. Boese,et al.  Cost Versus Distance In the Traveling Salesman Problem , 1995 .

[2]  Dipankar Dasgupta,et al.  Multiobjective fitness landscape analysis and the design of effective memetic algorithms , 2008 .

[3]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[5]  Thomas Stützle,et al.  Hybrid Population-Based Algorithms for the Bi-Objective Quadratic Assignment Problem , 2006, J. Math. Model. Algorithms.

[6]  Dipankar Dasgupta,et al.  Multiobjective Landscape Analysis and the Generalized Assignment Problem , 2008, LION.

[7]  H. R. Lourenço,et al.  Adaptive search heuristics for the generalized assignment problem , 2002 .

[8]  Thomas Stützle,et al.  Stochastic Local Search , 2007, Handbook of Approximation Algorithms and Metaheuristics.

[9]  Thomas Stützle,et al.  Stochastic Local Search: Foundations & Applications , 2004 .

[10]  T. Koopmans,et al.  Assignment Problems and the Location of Economic Activities , 1957 .

[11]  Agnès Plateau,et al.  A two-phase path-relinking algorithm for the generalized assignment problem , 2001 .

[12]  T. Ibaraki,et al.  A variable depth search algorithm with branching search for the generalized assignment problem , 1998 .

[13]  Juan A. Díaz,et al.  A Tabu search heuristic for the generalized assignment problem , 2001, Eur. J. Oper. Res..

[14]  Éric D. Taillard,et al.  Robust taboo search for the quadratic assignment problem , 1991, Parallel Comput..

[15]  Agnès Plateau,et al.  A path relinking algorithm for the generalized assignment problem , 2004 .

[16]  John E. Beasley,et al.  A genetic algorithm for the generalised assignment problem , 1997, Comput. Oper. Res..

[17]  Michael Racer,et al.  A robust heuristic for the Generalized Assignment Problem , 1994, Ann. Oper. Res..

[18]  Dipankar Dasgupta,et al.  Analyzing the Performance of Hybrid Evolutionary Algorithms for the Multiobjective Quadratic Assignment Problem , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[19]  David W. Corne,et al.  Towards Landscape Analyses to Inform the Design of Hybrid Local Search for the Multiobjective Quadratic Assignment Problem , 2002, HIS.

[20]  David W. Corne,et al.  Instance Generators and Test Suites for the Multiobjective Quadratic Assignment Problem , 2003, EMO.

[21]  H. R. Lourenço,et al.  Adaptive Approach Heuristics for The Generalized Assignment Problem , 1998 .

[22]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[23]  Teofilo F. Gonzalez,et al.  P-Complete Approximation Problems , 1976, J. ACM.

[24]  J. P. Kelly,et al.  Tabu search for the multilevel generalized assignment problem , 1995 .

[25]  Fred W. Glover,et al.  An Ejection Chain Approach for the Generalized Assignment Problem , 2004, INFORMS J. Comput..

[26]  Mutsunori Yagiura,et al.  3-B-2 A PATH RELINKING APPROACH FOR THE GENERALIZED ASSIGNMENT PROBLEM , 2002 .