Multi-mode bosonic Gaussian channels

A complete analysis of multi-mode bosonic Gaussian channels (BGCs) is proposed. We clarify the structure of unitary dilations of general Gaussian channels involving any number of bosonic modes and present a normal form. The maximum number of auxiliary modes that is needed is identified, including all rank deficient cases, and the specific role of additive classical noise is highlighted. By using this analysis, we derive a canonical matrix form of the noisy evolution of n-mode BGCs and of their weak complementary counterparts, based on a recent generalization of the normal mode decomposition for non-symmetric or locality constrained situations. This allows us to simplify the weak-degradability classification. Moreover, we investigate the structure of some singular multi-mode channels, like the additive classical noise channel that can be used to decompose a noisy channel in terms of a less noisy one in order to find new sets of maps with zero quantum capacity. Finally, the two-mode case is analyzed in detail. By exploiting the composition rules of two-mode maps and the fact that anti-degradable channels cannot be used to transfer quantum information, we identify sets of two-mode bosonic channels with zero capacity.

[1]  Ana Cannas da Silva,et al.  Lectures on Symplectic Geometry , 2008 .

[2]  M. Wolf,et al.  Not-so-normal mode decomposition. , 2007, Physical review letters.

[3]  Alexander S. Holevo,et al.  One-mode quantum Gaussian channels: Structure and quantum capacity , 2007, Probl. Inf. Transm..

[4]  F. Illuminati,et al.  Entanglement in continuous-variable systems: recent advances and current perspectives , 2007, quant-ph/0701221.

[5]  M. Wolf,et al.  Quantum capacities of bosonic channels. , 2006, Physical review letters.

[6]  A. Holevo,et al.  One-mode bosonic Gaussian channels: a full weak-degradability classification , 2006, quant-ph/0609013.

[7]  N. Cerf,et al.  Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution. , 2006, Physical review letters.

[8]  A. Acín,et al.  Optimality of Gaussian attacks in continuous-variable quantum cryptography. , 2006, Physical review letters.

[9]  V. Giovannetti,et al.  Degradability of bosonic Gaussian channels , 2006, quant-ph/0603257.

[10]  M. Ruskai,et al.  Properties of Conjugate Channels with Applications to Additivity and Multiplicativity , 2005, quant-ph/0509126.

[11]  C. Fabre,et al.  Entanglement of two-mode Gaussian states: characterization and experimental production and manipulation , 2005, quant-ph/0507067.

[12]  J. Eisert,et al.  Gaussian quantum channels , 2005, quant-ph/0505151.

[13]  J. Eisert,et al.  Multiplicativity of maximal output purities of Gaussian channels under Gaussian inputs , 2004, quant-ph/0406065.

[14]  I. Devetak The private classical capacity and quantum capacity of a quantum channel , 2003, IEEE Transactions on Information Theory.

[15]  S. Olivares,et al.  Gaussian States in Quantum Information , 2005 .

[16]  S. Lloyd,et al.  Minimum Rényi and Wehrl entropies at the output of bosonic channels , 2004, quant-ph/0404037.

[17]  S. Lloyd,et al.  Minimum output entropy of bosonic channels: A conjecture , 2004, quant-ph/0404005.

[18]  S. Lloyd,et al.  Classical capacity of the lossy bosonic channel: the exact solution. , 2003, Physical review letters.

[19]  S. Braunstein,et al.  Quantum Information with Continuous Variables , 2004, quant-ph/0410100.

[20]  J. Eisert,et al.  Introduction to the basics of entanglement theory in continuous-variable systems , 2003, quant-ph/0312071.

[21]  P. Shor,et al.  The Capacity of a Quantum Channel for Simultaneous Transmission of Classical and Quantum Information , 2003, quant-ph/0311131.

[22]  J. Ignacio Cirac,et al.  Entanglement transformations of pure Gaussian states , 2003, Quantum Inf. Comput..

[23]  J Eisert,et al.  Distilling Gaussian states with Gaussian operations is impossible. , 2002, Physical review letters.

[24]  J. Cirac,et al.  Characterization of Gaussian operations and distillation of Gaussian states , 2002, quant-ph/0204085.

[25]  J. Fiurášek Gaussian transformations and distillation of entangled Gaussian states. , 2002, Physical review letters.

[26]  Göran Lindblad,et al.  Cloning the quantum oscillator , 2000 .

[27]  R. Werner,et al.  Evaluating capacities of bosonic Gaussian channels , 1999, quant-ph/9912067.

[28]  A. Holevo,et al.  Capacity of quantum Gaussian channels , 1999 .

[29]  M. Nielsen,et al.  Information transmission through a noisy quantum channel , 1997, quant-ph/9702049.

[30]  S. Lloyd Capacity of the noisy quantum channel , 1996, quant-ph/9604015.

[31]  C. Caves,et al.  Quantum limits on bosonic communication rates , 1994 .

[32]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[33]  Bart Demoen,et al.  Completely positive maps on the CCR-algebra , 1977 .

[34]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[35]  J. Williamson,et al.  The Exponential Representation of Canonical Matrices , 1939 .

[36]  J. Williamson,et al.  On the Normal Forms of Linear Canonical Transformations in Dynamics , 1937 .

[37]  J. Williamson On the Algebraic Problem Concerning the Normal Forms of Linear Dynamical Systems , 1936 .