Celestial navigation in Drosophila

ABSTRACT Many casual observers typecast Drosophila melanogaster as a stationary pest that lurks around fruit and wine. However, the omnipresent fruit fly, which thrives even in desert habitats, likely established and maintained its cosmopolitan status via migration over large spatial scales. To perform long-distance dispersal, flies must actively maintain a straight compass heading through the use of external orientation cues, such as those derived from the sky. In this Review, we address how D. melanogaster accomplishes long-distance navigation using celestial cues. We focus on behavioral and physiological studies indicating that fruit flies can navigate both to a pattern of linearly polarized light and to the position of the sun – the same cues utilized by more heralded insect navigators such as monarch butterflies and desert ants. In both cases, fruit flies perform menotaxis, selecting seemingly arbitrary headings that they then maintain over time. We discuss how the fly's nervous system detects and processes this sensory information to direct the steering maneuvers that underlie navigation. In particular, we highlight recent findings that compass neurons in the central complex, a set of midline neuropils, are essential for navigation. Taken together, these results suggest that fruit flies share an ancient, latent capacity for celestial navigation with other insects. Furthermore, they illustrate the potential of D. melanogaster to help us to elucidate both the cellular basis of navigation and mechanisms of directed dispersal on a landscape scale. Summary: In this Review, we describe how the fruit fly, Drosophila melanogaster, uses the position of the sun and the pattern of polarized skylight to maintain a constant heading during long-distance dispersal flights.

[1]  M. Fingerman,et al.  The Orientation of Drosophila to Plane Polarized Light , 1953 .

[2]  Steven M. Reppert,et al.  Navigational mechanisms of migrating monarch butterflies , 2010, Trends in Neurosciences.

[3]  J. Herrera,et al.  [Not Available]. , 1948, Archivos. Hospital Santo Tomas.

[4]  Michael H Dickinson,et al.  The visual control of landing and obstacle avoidance in the fruit fly Drosophila melanogaster , 2012, Journal of Experimental Biology.

[5]  J. L. Gould,et al.  Skylight Polarization patterns and Animal Orientation , 1982 .

[6]  Stanley Heinze,et al.  Unraveling the neural basis of insect navigation. , 2017, Current opinion in insect science.

[7]  T. Wachtler,et al.  Color Discrimination with Broadband Photoreceptors , 2013, Current Biology.

[8]  B. Frost,et al.  Virtual migration in tethered flying monarch butterflies reveals their orientation mechanisms , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Thomas Labhart,et al.  Anatomical Reconstruction and Functional Imaging Reveal an Ordered Array of Skylight Polarization Detectors in Drosophila , 2016, The Journal of Neuroscience.

[10]  Martin Heisenberg,et al.  Comparative behavioral studies on two visual mutants ofDrosophila , 1972, Journal of comparative physiology.

[11]  M. Ernst,et al.  Walking Straight into Circles , 2009, Current Biology.

[12]  K. Frisch,et al.  Die Polarisation des Himmelslichtes als orientierender Faktor bei den Tänzen der Bienen , 1949, Experientia.

[13]  T. Dobzhansky,et al.  Rates of dispersal of Drosophila pseudoobscura and its relatives , 1974, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[14]  Peter T Weir,et al.  Flying Drosophila melanogaster maintain arbitrary but stable headings relative to the angle of polarized light , 2018, Journal of Experimental Biology.

[15]  J. Israelachvili,et al.  Absorption characteristics of oriented photopigments in microvilli , 2004, Biological Cybernetics.

[16]  Peter T Weir,et al.  Central complex neurons exhibit behaviorally gated responses to visual motion in Drosophila. , 2014, Journal of neurophysiology.

[17]  K. Fent,et al.  Polarized skylight orientation in the desert antCataglyphis , 1986, Journal of Comparative Physiology A.

[18]  Steven M Reppert,et al.  Neurobiology of Monarch Butterfly Migration. , 2016, Annual review of entomology.

[19]  Eric J. Warrant,et al.  Visual cues used by ball-rolling dung beetles for orientation , 2003, Journal of Comparative Physiology A.

[20]  Henrik Mouritsen,et al.  An experimental displacement and over 50 years of tag-recoveries show that monarch butterflies are not true navigators , 2013, Proceedings of the National Academy of Sciences.

[21]  H. Wunderer,et al.  Fine structure of ommatidia at the dorsal eye margin of Calliphora erythrocephala meigen (Diptera: Calliphoridae): An eye region specialised for the detection of polarized light , 1982 .

[22]  Js Jones,et al.  Long-Distance Migration of Drosophila , 1982, The American Naturalist.

[23]  Gábor Horváth,et al.  Polarization patterns of thick clouds: overcast skies have distribution of the angle of polarization similar to that of clear skies. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[24]  B. Webb,et al.  Neural mechanisms of insect navigation. , 2016, Current opinion in insect science.

[25]  Ian P. Woiwod,et al.  Wind Selection and Drift Compensation Optimize Migratory Pathways in a High-Flying Moth , 2008, Current Biology.

[26]  S. Combes,et al.  Linking biomechanics and ecology through predator–prey interactions: flight performance of dragonflies and their prey , 2012, Journal of Experimental Biology.

[27]  Michael H Dickinson,et al.  The aerodynamics and control of free flight manoeuvres in Drosophila , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[28]  Uwe Homberg,et al.  Integration of celestial compass cues in the central complex of the locust brain , 2018, Journal of Experimental Biology.

[29]  Eric J. Warrant,et al.  Lunar orientation in a beetle , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[30]  Bernhard Ronacher,et al.  Interactions of the polarization and the sun compass in path integration of desert ants , 2013, Journal of Comparative Physiology A.

[31]  V. Jayaraman,et al.  Ring attractor dynamics in the Drosophila central brain , 2017, Science.

[32]  Thomas Labhart,et al.  Can invertebrates see the e-vector of polarization as a separate modality of light? , 2016, Journal of Experimental Biology.

[33]  M. Wernet,et al.  Insect Responses to Linearly Polarized Reflections: Orphan Behaviors Without Neural Circuits , 2018, Front. Cell. Neurosci..

[34]  Stanley Heinze,et al.  Linking the Input to the Output: New Sets of Neurons Complement the Polarization Vision Network in the Locust Central Complex , 2009, The Journal of Neuroscience.

[35]  Johannes D. Seelig,et al.  Neural dynamics for landmark orientation and angular path integration , 2015, Nature.

[36]  G. Rubin,et al.  Neuroarchitecture and neuroanatomy of the Drosophila central complex: A GAL4-based dissection of protocerebral bridge neurons and circuits , 2014, The Journal of comparative neurology.

[37]  V. Alistair Drake,et al.  Animal Orientation Strategies for Movement in Flows , 2011, Current Biology.

[38]  M. Lindauer Time-compensated sun orientation in bees. , 1960, Cold Spring Harbor symposia on quantitative biology.

[39]  G. Horváth,et al.  How the clear-sky angle of polarization pattern continues underneath clouds: full-sky measurements and implications for animal orientation. , 2001, The Journal of experimental biology.

[40]  W. Heed Ecology and Genetics of Sonoran Desert Drosophila , 1978 .

[41]  Basil el Jundi,et al.  Integration of polarization and chromatic cues in the insect sky compass , 2014, Journal of Comparative Physiology A.

[42]  K. Frisch,et al.  Gelöste und ungelöste Rätsel der Bienensprache , 2004, Naturwissenschaften.

[43]  Steven M. Reppert,et al.  Antennal Circadian Clocks Coordinate Sun Compass Orientation in Migratory Monarch Butterflies , 2009, Science.

[44]  Volker Hartenstein,et al.  Visual Input to the Drosophila Central Complex by Developmentally and Functionally Distinct Neuronal Populations , 2017, Current Biology.

[45]  Eric J. Warrant,et al.  The Dung Beetle Dance: An Orientation Behaviour? , 2012, PloS one.

[46]  M. Dickinson,et al.  Flying Drosophila Orient to Sky Polarization , 2012, Current Biology.

[47]  Dan Beachy-Quick XV , 1825, The Princess Casamassima.

[48]  Jeffrey R. Powell,et al.  Progress and Prospects in Evolutionary Biology: The Drosophila Model , 1997 .

[49]  Rudolf Jander,et al.  A sun compass in monarch butterflies , 1997, nature.

[50]  J. Maxwell VIII. A dynamical theory of the electromagnetic field , 1865, Philosophical Transactions of the Royal Society of London.

[51]  R. Strauss The central complex and the genetic dissection of locomotor behaviour , 2002, Current Opinion in Neurobiology.

[52]  D. Reiff,et al.  Color Processing in the Early Visual System of Drosophila , 2018, Cell.

[53]  Michael H. Dickinson,et al.  Sun Navigation Requires Compass Neurons in Drosophila , 2018, Current Biology.

[54]  Thomas Labhart,et al.  Genetic Dissection Reveals Two Separate Retinal Substrates for Polarization Vision in Drosophila , 2012, Current Biology.

[55]  Peter T Weir,et al.  Functional divisions for visual processing in the central brain of flying Drosophila , 2015, Proceedings of the National Academy of Sciences.

[56]  U. Homberg,et al.  Behavioral analysis of polarization vision in tethered flying locusts , 2003, Journal of Comparative Physiology A.

[57]  I P Woiwod,et al.  An aerial netting study of insects migrating at high altitude over England , 2004, Bulletin of Entomological Research.

[58]  Vivek Jayaraman,et al.  Building a functional connectome of the Drosophila central complex , 2018, eLife.

[59]  Richard M. Murray,et al.  Discriminating External and Internal Causes for Heading Changes in Freely Flying Drosophila , 2013, PLoS Comput. Biol..

[60]  Reinhard Wolf,et al.  Polarization sensitivity of course control inDrosophila melanogaster , 1980, Journal of comparative physiology.

[61]  M. Heisenberg,et al.  Neuronal architecture of the central complex in Drosophila melanogaster , 2004, Cell and Tissue Research.

[62]  Rüdiger Wehner,et al.  Polarization vision in bees , 1986, Nature.

[63]  G. Rybicki Radiative transfer , 2019, Climate Change and Terrestrial Ecosystem Modeling.

[64]  Hon. J.W. Strutt XV. On the light from the sky, its polarization and colour , .

[65]  Patrick M. Lu,et al.  Flies dynamically anti-track, rather than ballistically escape, aversive odor during flight , 2012, Journal of Experimental Biology.

[66]  K. Götz Course-control, metabolism and wing interference during ultralong tethered flight in Drosophila melanogaster , 1987 .

[67]  G. D. Bernard,et al.  Twisted and non-twisted rhabdoms and their significance for polarization detection in the bee , 1975, Journal of comparative physiology.

[68]  Nicholas J. Strausfeld,et al.  Arthropod Brains: Evolution, Functional Elegance, and Historical Significance , 2012 .

[69]  B. Webb,et al.  An Anatomically Constrained Model for Path Integration in the Bee Brain , 2017, Current Biology.

[70]  R. Lewontin,et al.  Gene flow and the geographical distribution of a molecular polymorphism in Drosophila pseudoobscura. , 1981, Genetics.

[71]  R. Jander Menotaxis und Winkeltransponieren bei Köcherfliegen (Trichoptera) , 1960, Zeitschrift für vergleichende Physiologie.

[72]  R. Hardie,et al.  Properties of photoreceptors R7 and R8 in dorsal marginal ommatidia in the compound eyes ofMusca andCalliphora , 1984, Journal of Comparative Physiology A.

[73]  U. Homberg,et al.  Coding of Azimuthal Directions via Time-Compensated Combination of Celestial Compass Cues , 2007, Current Biology.

[74]  Thomas Labhart,et al.  Homothorax Switches Function of Drosophila Photoreceptors from Color to Polarized Light Sensors , 2003, Cell.

[75]  Aulus Gellius VIII. , 1856, Selected Poems.

[76]  John Guckenheimer,et al.  Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles , 2010, Proceedings of the National Academy of Sciences.

[77]  Michael Bate,et al.  Altered Electrical Properties in DrosophilaNeurons Developing without Synaptic Transmission , 2001, The Journal of Neuroscience.

[78]  U. Homberg,et al.  Organization and functional roles of the central complex in the insect brain. , 2014, Annual review of entomology.

[79]  Gerald M. Rubin,et al.  The optic lobe projection pattern of polarization-sensitive photoreceptor cells in Drosophila melanogaster , 1991, Cell and Tissue Research.

[80]  U. Homberg,et al.  A Distinct Layer of the Medulla Integrates Sky Compass Signals in the Brain of an Insect , 2011, PloS one.

[81]  Uwe Homberg,et al.  Sky Compass Orientation in Desert Locusts—Evidence from Field and Laboratory Studies , 2015, Front. Behav. Neurosci..

[82]  R. Wehner,et al.  Wind and sky as compass cues in desert ant navigation , 2007, Naturwissenschaften.

[83]  R. Wehner Desert ant navigation: how miniature brains solve complex tasks , 2003, Journal of Comparative Physiology A.

[84]  Uwe Homberg,et al.  A novel type of microglomerular synaptic complex in the polarization vision pathway of the locust brain , 2008, The Journal of comparative neurology.

[85]  Andrew D. Straw,et al.  Asymmetric Processing of Visual Motion for Simultaneous Object and Background Responses , 2014, Current Biology.

[86]  James Clerk Maxwell,et al.  VIII. A dynamical theory of the electromagnetic field , 1865, Philosophical Transactions of the Royal Society of London.

[87]  Julie H. Simpson,et al.  A neural command circuit for grooming movement control , 2015, eLife.

[88]  Justin Marshall,et al.  Patterns and properties of polarized light in air and water , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[89]  Samuel Rossel,et al.  Navigation by bees using polarized skylight , 1993 .

[90]  Michael H Dickinson,et al.  Death Valley, Drosophila, and the Devonian toolkit. , 2014, Annual review of entomology.

[91]  M. Dickinson,et al.  The changes in power requirements and muscle efficiency during elevated force production in the fruit fly Drosophila melanogaster. , 1997, The Journal of experimental biology.

[92]  Uwe Homberg,et al.  Organization and neural connections of the anterior optic tubercle in the brain of the locust, Schistocerca gregaria , 2003, The Journal of comparative neurology.

[93]  Johannes D. Seelig,et al.  Feature detection and orientation tuning in the Drosophila central complex , 2013, Nature.

[94]  T. Labhart,et al.  Detectors for polarized skylight in insects: a survey of ommatidial specializations in the dorsal rim area of the compound eye , 1999, Microscopy research and technique.

[95]  Rüdiger Wehner,et al.  The POL area of the honey bee's eye: behavioural evidence , 1985 .

[96]  James J. Foster,et al.  A Snapshot-Based Mechanism for Celestial Orientation , 2016, Current Biology.

[97]  E. Lack MIGRATION OF INSECTS AND BIRDS THROUGH A PYRENEAN PASS , 1951 .

[98]  U. Homberg,et al.  Spectral properties of identified polarized-light sensitive interneurons in the brain of the desert locust Schistocerca gregaria , 2007, Journal of Experimental Biology.

[99]  R. Hardie Polarization Vision: Drosophila Enters the Arena , 2012, Current Biology.

[100]  R. Wehner The ant’s celestial compass system: spectral and polarization channels , 1997 .

[101]  Stanley Heinze,et al.  Central neural coding of sky polarization in insects , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[102]  J. Taube The head direction signal: origins and sensory-motor integration. , 2007, Annual review of neuroscience.