Mapping the human membrane proteome : a majority of the human membrane proteins can be classified according to function and evolutionary origin

[1]  L. Holm,et al.  The Pfam protein families database , 2005, Nucleic Acids Res..

[2]  Antje Chang,et al.  BRENDA, AMENDA and FRENDA the enzyme information system: new content and tools in 2009 , 2008, Nucleic Acids Res..

[3]  The UniProt Consortium,et al.  The Universal Protein Resource (UniProt) 2009 , 2008, Nucleic Acids Res..

[4]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[5]  H. Schiöth,et al.  Structural diversity of G protein-coupled receptors and significance for drug discovery , 2008, Nature Reviews Drug Discovery.

[6]  H. Ploegh,et al.  UNC93B1 delivers nucleotide-sensing toll-like receptors to endolysosomes , 2008, Nature.

[7]  J. Piontek,et al.  Structure and function of claudins. , 2008, Biochimica et biophysica acta.

[8]  James A. Cuff,et al.  Distinguishing protein-coding and noncoding genes in the human genome , 2007, Proceedings of the National Academy of Sciences.

[9]  G. von Heijne,et al.  The membrane protein universe: what's out there and why bother? , 2007, Journal of internal medicine.

[10]  E. Odintsova,et al.  Tetraspanins as Regulators of Protein Trafficking , 2007, Traffic.

[11]  G. Heijne Membrane-protein topology , 2006, Nature Reviews Molecular Cell Biology.

[12]  G. von Heijne,et al.  A global topology map of the Saccharomyces cerevisiae membrane proteome. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[13]  J. Chamberlain,et al.  Dissecting the signaling and mechanical functions of the dystrophin-glycoprotein complex , 2006, Journal of Cell Science.

[14]  Milton H. Saier,et al.  TCDB: the Transporter Classification Database for membrane transport protein analyses and information , 2005, Nucleic Acids Res..

[15]  Sue Povey,et al.  The HUGO Gene Nomenclature Database, 2006 updates , 2005, Nucleic Acids Res..

[16]  Mamoun Ahram,et al.  Estimation of Membrane Proteins in the Human Proteome , 2006, Silico Biol..

[17]  Erik L. L. Sonnhammer,et al.  Kalign – an accurate and fast multiple sequence alignment algorithm , 2005, BMC Bioinformatics.

[18]  G. von Heijne,et al.  Global Topology Analysis of the Escherichia coli Inner Membrane Proteome , 2005, Science.

[19]  H. Schiöth,et al.  The Repertoire of G-Protein–Coupled Receptors in Fully Sequenced Genomes , 2005, Molecular Pharmacology.

[20]  Cathy H. Wu,et al.  The Universal Protein Resource (UniProt) , 2004, Nucleic Acids Res..

[21]  E. Birney,et al.  The International Protein Index: An integrated database for proteomics experiments , 2004, Proteomics.

[22]  A. Krogh,et al.  A combined transmembrane topology and signal peptide prediction method. , 2004, Journal of molecular biology.

[23]  M. Philippova,et al.  Structure and Functions of Classical Cadherins , 2001, Biochemistry (Moscow).

[24]  Andrew Josey Updates , 2009, login Usenix Mag..

[25]  Andreas Rolfs,et al.  The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins , 2004, Pflügers Archiv.

[26]  Darrell R. Abernethy,et al.  International Union of Pharmacology: Approaches to the Nomenclature of Voltage-Gated Ion Channels , 2003, Pharmacological Reviews.

[27]  Philippe Marin,et al.  The ‘magic tail’ of G protein‐coupled receptors: an anchorage for functional protein networks , 2003, FEBS letters.

[28]  Izhar Ben-Shlomo,et al.  Signaling Receptome: A Genomic and Evolutionary Perspective of Plasma Membrane Receptors Involved in Signal Transduction , 2003, Science's STKE.

[29]  T. Hunter,et al.  The Protein Kinase Complement of the Human Genome , 2002, Science.

[30]  Steven Phillips,et al.  Reducing the computation time of the Isodata and K-means unsupervised classification algorithms , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[31]  T. Hunter,et al.  Evolution of protein kinase signaling from yeast to man. , 2002, Trends in biochemical sciences.

[32]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[33]  A. Protopopov,et al.  hUNC93B1: a novel human gene representing a new gene family and encoding an unc-93-like protein. , 2002, Gene.

[34]  Harald Hutter,et al.  Tetraspan vesicle membrane proteins: synthesis, subcellular localization, and functional properties. , 2002, International review of cytology.

[35]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[36]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.

[37]  I. Longden,et al.  EMBOSS: the European Molecular Biology Open Software Suite. , 2000, Trends in genetics : TIG.

[38]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[39]  Shigeki Mitaku,et al.  SOSUI: classification and secondary structure prediction system for membrane proteins , 1998, Bioinform..

[40]  Sean R. Eddy,et al.  Profile hidden Markov models , 1998, Bioinform..

[41]  J. Levin,et al.  The Caenorhabditis elegans unc-93 gene encodes a putative transmembrane protein that regulates muscle contraction , 1992, The Journal of cell biology.

[42]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[43]  Geoffrey H. Ball,et al.  ISODATA, A NOVEL METHOD OF DATA ANALYSIS AND PATTERN CLASSIFICATION , 1965 .

[44]  Charles Darwin,et al.  Experiments , 1800, The Medical and physical journal.

[45]  Christus,et al.  A General Method Applicable to the Search for Similarities in the Amino Acid Sequence of Two Proteins , 2022 .