Rank minimization over finite fields

This paper establishes information-theoretic limits in estimating a finite field low-rank matrix given random linear measurements of it. Necessary and sufficient conditions on the number of measurements required are provided. It is shown that these conditions are sharp. The reliability function associated to the minimum-rank decoder is also derived. Our bounds hold even in the case where the sensing matrices are sparse. Connections to rank-metric codes are discussed.

[1]  Emmanuel J. Candès,et al.  The Power of Convex Relaxation: Near-Optimal Matrix Completion , 2009, IEEE Transactions on Information Theory.

[2]  Pierre Loidreau,et al.  Properties of codes in rank metric , 2006, ArXiv.

[3]  Dominique de Caen,et al.  A lower bound on the probability of a union , 1997, Discret. Math..

[4]  Dimitris S. Papailiopoulos,et al.  Distributed storage codes meet multiple-access wiretap channels , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[5]  Benjamin Recht,et al.  A Simpler Approach to Matrix Completion , 2009, J. Mach. Learn. Res..

[6]  Stark C. Draper,et al.  Compressed sensing over finite fields , 2009, 2009 IEEE International Symposium on Information Theory.

[7]  Sriram Vishwanath,et al.  Information theoretic bounds for low-rank matrix completion , 2010, 2010 IEEE International Symposium on Information Theory.

[8]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[9]  Imre Csiszár Linear codes for sources and source networks: Error exponents, universal coding , 1982, IEEE Trans. Inf. Theory.

[10]  Vincent Y. F. Tan,et al.  Rank Minimization Over Finite Fields: Fundamental Limits and Coding-Theoretic Interpretations , 2011, IEEE Transactions on Information Theory.

[11]  Andrea Montanari,et al.  Coding for Network Coding , 2007, ArXiv.

[12]  Elchanan Mossel,et al.  Reconstruction of Markov Random Fields from Samples: Some Observations and Algorithms , 2007, SIAM J. Comput..

[13]  Frank R. Kschischang,et al.  Communication Over Finite-Field Matrix Channels , 2008, IEEE Transactions on Information Theory.