Disruption of the Keap1/Nrf2-Antioxidant Response System After Chronic Doxorubicin Exposure In Vivo

[1]  Y. Muragaki,et al.  Activation of KEAP1/NRF2/P62 signaling alleviates high phosphate-induced calcification of vascular smooth muscle cells by suppressing reactive oxygen species production , 2019, Scientific Reports.

[2]  Dean P. Jones,et al.  Enhanced Keap1-Nrf2 signaling protects the myocardium from isoproterenol-induced pathological remodeling in mice , 2019, Redox biology.

[3]  N. Jura,et al.  Functional role of PGAM5 multimeric assemblies and their polymerization into filaments , 2019, Nature Communications.

[4]  S. Lipshultz,et al.  Cardiovascular disease in survivors of childhood cancer , 2018, Current opinion in pediatrics.

[5]  Wenqun Li,et al.  Nrf2-dependent antioxidant response mediated the protective effect of tanshinone IIA on doxorubicin-induced cardiotoxicity , 2018, Experimental and therapeutic medicine.

[6]  Y. Park,et al.  PGAM5 regulates PINK1/Parkin-mediated mitophagy via DRP1 in CCCP-induced mitochondrial dysfunction. , 2018, Toxicology letters.

[7]  M. Muqit,et al.  PINK1 and Parkin: emerging themes in mitochondrial homeostasis. , 2017, Current opinion in cell biology.

[8]  M. Komatsu,et al.  Regulation of the Keap1–Nrf2 pathway by p62/SQSTM1 , 2016 .

[9]  M. Mattson,et al.  Mitochondrial Protein PGAM5 Regulates Mitophagic Protection against Cell Necroptosis , 2016, PloS one.

[10]  R. Gottlieb,et al.  Untangling Autophagy Measurements: All Fluxed Up , 2015, Circulation research.

[11]  R. Youle,et al.  The Roles of PINK1, Parkin, and Mitochondrial Fidelity in Parkinson’s Disease , 2015, Neuron.

[12]  Wanqing Sun,et al.  The Role of Nrf2-Mediated Pathway in Cardiac Remodeling and Heart Failure , 2014, Oxidative medicine and cellular longevity.

[13]  T. Mizushima,et al.  Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. , 2013, Molecular cell.

[14]  S. Matoba,et al.  Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart , 2013, Nature Communications.

[15]  Donna D. Zhang,et al.  USP15 negatively regulates Nrf2 through deubiquitination of Keap1. , 2013, Molecular cell.

[16]  L. Lazarenko,et al.  Doxorubicin dose for congestive heart failure modeling and the use of general ultrasound equipment for evaluation in rats. Longitudinal in vivo study. , 2013, Medical ultrasonography.

[17]  Hye Eun Lee,et al.  Sestrins activate Nrf2 by promoting p62-dependent autophagic degradation of Keap1 and prevent oxidative liver damage. , 2013, Cell metabolism.

[18]  Q. Ma,et al.  Molecular Basis of Electrophilic and Oxidative Defense: Promises and Perils of Nrf2 , 2012, Pharmacological Reviews.

[19]  M. Picklo,et al.  The Nrf2-antioxidant response element pathway: a target for regulating energy metabolism. , 2012, The Journal of nutritional biochemistry.

[20]  S. Lipshultz,et al.  Cardiotoxicity in childhood cancer survivors: strategies for prevention and management. , 2012, Future cardiology.

[21]  R. Roberts,et al.  Drug-Induced Oxidative Stress and Toxicity , 2012, Journal of toxicology.

[22]  R. Youle,et al.  PINK1- and Parkin-mediated mitophagy at a glance , 2012, Journal of Cell Science.

[23]  Donna D. Zhang,et al.  Regulation of the Nrf2-Keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases. , 2010, Antioxidants & redox signaling.

[24]  M. McMahon,et al.  p62/SQSTM1 Is a Target Gene for Transcription Factor NRF2 and Creates a Positive Feedback Loop by Inducing Antioxidant Response Element-driven Gene Transcription* , 2010, The Journal of Biological Chemistry.

[25]  G. Lopaschuk,et al.  Metabolic remodeling associated with subchronic doxorubicin cardiomyopathy. , 2010, Toxicology.

[26]  R. Guérois,et al.  Activation of NRF2 by Nitrosative Agents and H2O2 Involves KEAP1 Disulfide Formation* , 2010, The Journal of Biological Chemistry.

[27]  B. Yeğen,et al.  Resveratrol treatment protects against doxorubicin-induced cardiotoxicity by alleviating oxidative damage , 2009, Free radical research.

[28]  K. Wallace,et al.  Persistent Alterations to the Gene Expression Profile of the Heart Subsequent to Chronic Doxorubicin Treatment , 2007, Cardiovascular Toxicology.

[29]  K. Wallace Adriamycin-induced interference with cardiac mitochondrial calcium homeostasis , 2007, Cardiovascular Toxicology.

[30]  M. Hannink,et al.  PGAM5, a Bcl-XL-interacting Protein, Is a Novel Substrate for the Redox-regulated Keap1-dependent Ubiquitin Ligase Complex* , 2006, Journal of Biological Chemistry.

[31]  M. Lieberman,et al.  Ubiquitination of Keap1, a BTB-Kelch Substrate Adaptor Protein for Cul3, Targets Keap1 for Degradation by a Proteasome-independent Pathway* , 2005, Journal of Biological Chemistry.

[32]  K. Wallace,et al.  Doxorubicin-induced cardiac mitochondrionopathy. , 2003, Pharmacology & toxicology.

[33]  K. Wallace,et al.  Multitrack system for superfusing isolated cardiac myocytes. , 2003, American journal of physiology. Heart and circulatory physiology.

[34]  Shaoyu Zhou,et al.  Interference with calcium-dependent mitochondrial bioenergetics in cardiac myocytes isolated from doxorubicin-treated rats. , 2001, Toxicology and applied pharmacology.

[35]  Shaoyu Zhou,et al.  Doxorubicin-induced persistent oxidative stress to cardiac myocytes. , 2001, Toxicology letters.

[36]  A. Cassaigne,et al.  Phosphoserine Aminotransferase, the Second Step‐Catalyzing Enzyme for Serine Biosynthesis , 1999, IUBMB life.

[37]  C. Palmeira,et al.  Cardioselective and cumulative oxidation of mitochondrial DNA following subchronic doxorubicin administration. , 1999, Biochimica et biophysica acta.

[38]  C. Palmeira,et al.  Preferential oxidation of cardiac mitochondrial DNA following acute intoxication with doxorubicin. , 1997, Biochimica et biophysica acta.

[39]  K. Wallace,et al.  Selective activation of the sodium-independent, cyclosporin A-sensitive calcium pore of cardiac mitochondria by doxorubicin. , 1993, Toxicology and applied pharmacology.

[40]  S. Colan,et al.  Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. , 1991, The New England journal of medicine.

[41]  D. V. Von Hoff,et al.  Risk factors for doxorubicin-induced congestive heart failure. , 1979, Annals of internal medicine.

[42]  E J Freireich,et al.  Quantitative comparison of toxicity of anticancer agents in mouse, rat, hamster, dog, monkey, and man. , 1966, Cancer chemotherapy reports.

[43]  K. Wallace,et al.  Keap1 redox-dependent regulation of doxorubicin-induced oxidative stress response in cardiac myoblasts. , 2014, Toxicology and applied pharmacology.

[44]  R. Youle,et al.  Mechanisms of mitophagy , 2010, Nature Reviews Molecular Cell Biology.

[45]  K. Wallace,et al.  Adriamycin-induced oxidative mitochondrial cardiotoxicity , 2006, Cell Biology and Toxicology.

[46]  Oprs Alert Guidance for Industry Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers , 2005 .

[47]  Shaoyu Zhou,et al.  Cumulative and irreversible cardiac mitochondrial dysfunction induced by doxorubicin. , 2001, Cancer research.

[48]  G. Levitt,et al.  Anthracycline dose in childhood acute lymphoblastic leukemia: issues of early survival versus late cardiotoxicity. , 1997, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[49]  J. Ward,et al.  Adriamycininduced Cardiotoxicity ( Cardiomyopathy and Congestive Heart Failure ) in Rats , 2022 .

[50]  Yu-Ting Chang,et al.  International Journal of Molecular Sciences the Regulations of Deubiquitinase Usp15 and Its Pathophysiological Mechanisms in Diseases , 2022 .