Passive and hybrid piezoelectric circuits to reduce induced-atmospheric turbulence vibration of a plate-like wing

Different methods for suppressing random (turbulence induced) vibrations of a plate like wing with embedded piezoceramics are investigated. An electromechanically coupled finite element model (that accounts different external circuits) is combined with unsteady aerodynamic models (the doublet-lattice method and Roger’s model) to develop a piezoaeroelastic model of cantilevered plates representing wing-like structures. An atmospheric turbulence model (Von-Karman’s and Dryden’s spectrum) is used to induce random vibrations at different airflow speeds. An active controller and different piezoelectric shunt circuits – passive and hybrid (combining passive circuits and voltage sources – are applied to suppress random vibrations over a range of airflow speeds when a single pair of piezoceramics is modeled on the clamped end of the plate. The behavior of the piezoaeroelastic system is investigated in time and frequency domains. Simulation results demonstrate that the hybrid control approach is more effective than purely passive or active controllers.

[1]  K. W. Wang,et al.  Structural vibration control via piezoelectric materials with active-passive hybrid networks , 1994 .

[2]  Daniel J. Inman,et al.  Simultaneous Energy Harvesting and Gust Alleviation for a Multifunctional Wing Spar Using Reduced Energy Control Laws via Piezoceramics , 2011 .

[3]  Daniel J. Inman,et al.  Issues in mathematical modeling of piezoelectric energy harvesters , 2008 .

[4]  Gregory S. Agnes,et al.  Development of a Modal Model for Simultaneous Active and Passive Piezoelectric Vibration Suppression , 1995 .

[5]  Jing Yuan Hybrid Vibration Absorption by Zero/Pole-Assignment , 2000 .

[6]  Daniel J. Inman,et al.  An electromechanical finite element model for piezoelectric energy harvester plates , 2009 .

[7]  W. Rodden,et al.  A doublet-lattice method for calculating lift distributions on oscillating surfaces in subsonic flows. , 1969 .

[8]  Ann Marie Sastry,et al.  Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems , 2008 .

[9]  S. T. Wang,et al.  Atmospheric turbulence simulation techniques with application to flight analysis , 1980 .

[10]  Daniel J. Inman,et al.  A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters , 2008 .

[11]  Yonghui Zhao Vibration Suppression of a Quadrilateral Plate Using Hybrid Piezoelectric Circuits , 2010 .

[12]  Kenneth B. Lazarus,et al.  Multivariable active lifting surface control using strain actuation : Analytical and experimental results , 1997 .

[13]  S. Priya Advances in energy harvesting using low profile piezoelectric transducers , 2007 .

[14]  M. Karpel,et al.  Design for active and passive flutter suppression and gust alleviation. Ph.D. Thesis , 1981 .

[15]  C. D. Johnson,et al.  Design of Passive Damping Systems , 1995 .

[16]  Meng-Shiun Tsai,et al.  ON THE STRUCTURAL DAMPING CHARACTERISTICS OF ACTIVE PIEZOELECTRIC ACTUATORS WITH PASSIVE SHUNT , 1999 .

[17]  Daniel J. Inman,et al.  Piezoaeroelastic Modeling and Analysis of a Generator Wing with Continuous and Segmented Electrodes , 2010 .

[18]  Sang-Gook Kim,et al.  DESIGN CONSIDERATIONS FOR MEMS-SCALE PIEZOELECTRIC MECHANICAL VIBRATION ENERGY HARVESTERS , 2005 .

[19]  Daniel J. Inman,et al.  An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations , 2009 .

[20]  Andrew J. Fleming,et al.  Multiple mode current flowing passive piezoelectric shunt controller , 2003 .

[21]  Henry A. Sodano,et al.  A review of power harvesting using piezoelectric materials (2003–2006) , 2007 .

[22]  Donald McLean,et al.  Automatic Flight Control Systems , 1990 .

[23]  Robert L. Forward,et al.  Electronic damping of vibrations in optical structures. , 1979, Applied optics.

[24]  Daniel J. Inman,et al.  Piezo-aero-elastically coupled modeling and analysis of electrical power generation and shunt damping for a cantilevered plate , 2009 .

[25]  Daniel J. Inman,et al.  Effect of Strain Nodes and Electrode Configuration on Piezoelectric Energy Harvesting From Cantilevered Beams , 2009 .

[26]  Gregory S. Agnes,et al.  Active/passive piezoelectric vibration suppression , 1994, Smart Structures.

[27]  Nesbitt W. Hagood,et al.  Damping of structural vibrations with piezoelectric materials and passive electrical networks , 1991 .

[28]  Shu-yau Wu,et al.  Piezoelectric shunts with a parallel R-L circuit for structural damping and vibration control , 1996, Smart Structures.

[29]  Daniel J. Inman,et al.  Estimation of Electric Charge Output for Piezoelectric Energy Harvesting , 2004 .