Mismatched multi-letter successive decoding for the multiple-access channel

This paper studies channel coding for the discrete memoryless multiple-access channel with a given decoding rule. A multi-letter successive decoding rule depending on an arbitrary non-negative function q(x1, x2, y) is considered, and an achievable rate region and error exponent are derived. The rate region is compared with that of the maximum-metric decoder which uses the function q(x1, x2, y), and a numerical example is given for which successive decoding yields a strictly higher sum rate for a given pair of input distributions.

[1]  Neri Merhav,et al.  Exact Random Coding Exponents for Erasure Decoding , 2011, IEEE Trans. Inf. Theory.

[2]  Achilleas Anastasopoulos,et al.  Error Exponent for Multiple Access Channels: Upper Bounds , 2015, IEEE Transactions on Information Theory.

[3]  Neri Merhav,et al.  Error Exponents of Optimum Decoding for the Interference Channel , 2010, IEEE Transactions on Information Theory.

[4]  Imre Csiszár,et al.  Channel capacity for a given decoding metric , 1995, IEEE Trans. Inf. Theory.

[5]  Nadav Shulman,et al.  Communication over an unknown channel via common broadcasting , 2003 .

[6]  Albert Guillén i Fàbregas,et al.  Mismatched Decoding: Error Exponents, Second-Order Rates and Saddlepoint Approximations , 2013, IEEE Transactions on Information Theory.

[7]  Thomas M. Cover,et al.  Network Information Theory , 2001 .

[8]  Mine Alsan,et al.  Re-proving Channel Polarization Theorems: An Extremality and Robustness Analysis , 2014, ArXiv.

[9]  Shlomo Shamai,et al.  On information rates for mismatched decoders , 1994, IEEE Trans. Inf. Theory.

[10]  Amos Lapidoth,et al.  Mismatched decoding and the multiple-access channel , 1994, IEEE Trans. Inf. Theory.

[11]  Anelia Somekh-Baruch On Achievable Rates for Channels with Mismatched Decoding , 2013, ArXiv.

[12]  Anelia Somekh-Baruch On Achievable Rates and Error Exponents for Channels With Mismatched Decoding , 2015, IEEE Transactions on Information Theory.

[13]  Joseph Y. N. Hui,et al.  Fundamental issues of multiple accessing , 1983 .

[14]  Albert Guillén i Fàbregas,et al.  The likelihood decoder: Error exponents and mismatch , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[15]  Neri Merhav,et al.  Error Exponents for Broadcast Channels With Degraded Message Sets , 2011, IEEE Transactions on Information Theory.

[16]  Philip A. Whiting,et al.  Rate-splitting multiple access for discrete memoryless channels , 2001, IEEE Trans. Inf. Theory.

[17]  Albert Guillén i Fàbregas,et al.  Multiuser Random Coding Techniques for Mismatched Decoding , 2013, IEEE Transactions on Information Theory.

[18]  Neri Merhav,et al.  Error Exponents of Erasure/List Decoding Revisited Via Moments of Distance Enumerators , 2007, IEEE Transactions on Information Theory.

[19]  Anelia Somekh-Baruch A General Formula for the Mismatch Capacity , 2015, IEEE Transactions on Information Theory.

[20]  Emre Telatar,et al.  Mismatched decoding revisited: General alphabets, channels with memory, and the wide-band limit , 2000, IEEE Trans. Inf. Theory.

[21]  Imre Csiszár,et al.  Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition , 2011 .

[22]  Imre Csiszár,et al.  Graph decomposition: A new key to coding theorems , 1981, IEEE Trans. Inf. Theory.

[23]  Amiel Feinstein,et al.  A new basic theorem of information theory , 1954, Trans. IRE Prof. Group Inf. Theory.

[24]  Mine Alsan Performance of mismatched polar codes over BSCs , 2012, 2012 International Symposium on Information Theory and its Applications.

[25]  L. Goddard Information Theory , 1962, Nature.

[26]  Emre Telatar,et al.  Polarization as a novel architecture to boost the classical mismatched capacity of B-DMCs , 2014, 2014 IEEE Information Theory Workshop (ITW 2014).

[27]  Amin Gohari,et al.  A technique for deriving one-shot achievability results in network information theory , 2013, 2013 IEEE International Symposium on Information Theory.

[28]  Neri Merhav,et al.  Exact Random Coding Exponents for Erasure Decoding , 2011, IEEE Transactions on Information Theory.

[29]  S. Shamai,et al.  Information rates and error exponents of compound channels with application to antipodal signaling in a fading environment , 1993 .

[30]  Mine Alsan A lower bound on achievable rates by polar codes with mismatch polar decoding , 2013, 2013 IEEE Information Theory Workshop (ITW).