Thickness-dependent microstructural and electromechanical properties in polyurethane films obtained by polymer solution casting

[1]  Z. Dang,et al.  Plasticized thermoplastic polyurethanes for dielectric elastomers with improved electromechanical actuation , 2017 .

[2]  Z. Dang,et al.  Improving electromechanical strain of polyurethanes via optimizing electric field ramp rate and actuator size , 2017 .

[3]  L. Lebrun,et al.  Investigation of elastic, electrical and electromechanical properties of polyurethane/grafted carbon nanotubes nanocomposites , 2015 .

[4]  L. Lebrun,et al.  Modeling of segmented pure polyurethane electrostriction behaviors based on their nanostructural properties , 2015 .

[5]  J. Cavaillé,et al.  Electrostrictive thermoplastic polyurethane-based nanocomposites filled with carboxyl-functionalized multi-walled carbon nanotubes (MWCNT-COOH): Properties and improvement of electromechanical activity , 2013 .

[6]  J. Cavaillé,et al.  Physical modeling of the electromechanical behavior of polar heterogeneous polymers , 2012 .

[7]  D. Guyomar,et al.  Preparation of graphene nanoflakes/polymer composites and their performances for actuation and energy harvesting applications , 2012 .

[8]  D. Guyomar,et al.  Thickness effect on electrostrictive polyurethane strain performances: A three-layer model , 2011 .

[9]  J. Cavaillé,et al.  Improvement of electrostrictive properties of a polyether-based polyurethane elastomer filled with conductive carbon black , 2011 .

[10]  D. Guyomar,et al.  Enhanced electroactive properties of polyurethane films loaded with carbon-coated SiC nanowires , 2009 .

[11]  J. Pascault,et al.  Synthesis and properties of self-crosslinkable thermoplastic polyurethanes , 2007 .

[12]  I. Diaconu,et al.  Electrostriction of a Polyurethane Elastomer-Based Polyester , 2006, IEEE Sensors Journal.

[13]  D. Guyomar,et al.  Enhanced electric field-induced strain in non-percolative carbon nanopowder/polyurethane composites , 2006 .

[14]  Yiming Liu,et al.  Investigation of electrostrictive polymers for energy harvesting , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[15]  M. Boyce,et al.  Stress–strain behavior of thermoplastic polyurethanes , 2005 .

[16]  Qiming Zhang,et al.  Fully Functionalized High‐Dielectric‐Constant Nanophase Polymers with High Electromechanical Response , 2005 .

[17]  Ruth E. Cameron,et al.  A review of small-angle scattering models for random segmented poly(ether-urethane) copolymers , 2004 .

[18]  E. Balizer,et al.  Electrostrictive effect in polyurethanes , 2003 .

[19]  A. Saiani,et al.  Origin of Multiple Melting Endotherms in a High Hard Block Content Polyurethane. 1. Thermodynamic Investigation , 2001 .

[20]  Robert E. Newnham,et al.  Converse electrostriction in polymers and composites , 1999 .

[21]  R. Y. Ting,et al.  Space-charge-enhanced electromechanical response in thin-film polyurethane elastomers , 1997 .

[22]  Qiming Zhang,et al.  An experimental investigation of electromechanical responses in a polyurethane elastomer , 1997 .

[23]  Jerry I. Scheinbeim,et al.  High field electrostrictive response of polymers , 1994 .

[24]  J. Koberstein,et al.  Multiple melting in segmented polyurethane block copolymers , 1992 .

[25]  I. Javni,et al.  The effect of soft‐segment length and concentration on phase separation in segmented polyurethanes , 1989 .

[26]  Thomas P. Russell,et al.  Simultaneous SAXS-DSC study of multiple endothermic behavior in polyether-based polyurethane block copolymers , 1986 .

[27]  E. Cosgriff-Hernandez,et al.  Hierarchal structure–property relationships of segmented polyurethanes , 2016 .

[28]  T. Iyoda,et al.  Nanocylinder Array Structures in Block Copolymer Thin Films , 2006 .

[29]  W. Voigt Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper , 1889 .