New polyalkynyl dendrons and dendrimers: "click" chemistry with azidomethylferrocene and specific anion and cation electrochemical sensing properties of the 1,2,3-triazole-containing dendrimers.
暂无分享,去创建一个
[1] D. Astruc,et al. Metallocenyl dendrimers and their applications in molecular electronics, sensing, and catalysis. , 2008, Accounts of chemical research.
[2] R. Roy,et al. Expeditive synthesis of glycodendrimer scaffolds based on versatile TRIS and mannoside derivatives. , 2008, The Journal of organic chemistry.
[3] G. Newkome,et al. Recent progress and applications for metallodendrimers , 2007 .
[4] Anders Hult,et al. A chemoselective approach for the accelerated synthesis of well-defined dendritic architectures. , 2007, Chemical communications.
[5] É. Cloutet,et al. Click assembly of 1,2,3-triazole-linked dendrimers, including ferrocenyl dendrimers, which sense both oxo anions and metal cations. , 2007, Angewandte Chemie.
[6] D. Astruc,et al. Metallocenes as references for the determination of redox potentials by cyclic voltammetry Permethylated iron and cobalt sandwich complexes, inhibition by polyamine dendrimers, and the role of hydroxy-containing ferrocenes , 2006 .
[7] Rachel K. O'Reilly,et al. Dendrimers Clicked Together Divergently , 2005 .
[8] C. Hawker,et al. Structurally diverse dendritic libraries : A highly efficient functionalization approach using Click chemistry , 2005 .
[9] K. Heuzé,et al. Metallodendritic catalysis for redox and carbon-carbon bond formation reactions : A step towards green chemistry , 2005 .
[10] Craig J Hawker,et al. Efficiency and fidelity in a click-chemistry route to triazole dendrimers by the copper(i)-catalyzed ligation of azides and alkynes. , 2004, Angewandte Chemie.
[11] M. Glodde,et al. Designing libraries of first generation AB3 and AB2 self-assembling dendrons via the primary structure generated from combinations of (AB)(y)-AB3 and (AB)(y)-AB2 building blocks. , 2004, Journal of the American Chemical Society.
[12] Steven P. Brown,et al. Supramolecular assembly of dendritic polymers elucidated by 1H and 13C solid-state MAS NMR spectroscopy. , 2003, Journal of the American Chemical Society.
[13] D. Astruc,et al. Synthesis of five generations of redox-stable pentamethylamidoferrocenyl dendrimers and comparison of amidoferrocenyl- and pentamethylamidoferrocenyl dendrimers as electrochemical exoreceptors for the selective recognition of H2PO4-, HSO4-, and adenosine 5'-triphosphate (ATP) anions: stereoelectroni , 2003, Chemistry.
[14] S. Lazare,et al. Construction of giant dendrimers using a tripodal building block. , 2003, Journal of the American Chemical Society.
[15] D. Astruc,et al. Supramolecular H-bonded assemblies of redox-active metallodendrimers and positive and unusual dendritic effects on the recognition of H2PO4-. , 2003, Journal of the American Chemical Society.
[16] D. Astruc. Organometallic chemistry at the nanoscale. Dendrimers for redox processes and catalysis , 2003 .
[17] Jason J. Davis,et al. Anion recognition and redox sensing amplification by self-assembled monolayers of 1,1'bis(alkyl-N-amido)ferrocene. , 2002, Chemical communications.
[18] Luke G Green,et al. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. , 2002, Angewandte Chemie.
[19] Morten Meldal,et al. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. , 2002, The Journal of organic chemistry.
[20] D. Astruc,et al. Supramolecular gold nanoparticles for the redox recognition of oxoanions: syntheses, titrations, stereoelectronic effects, and selectivity. , 2002, Journal of the American Chemical Society.
[21] D. Astruc,et al. Dendritic catalysts and dendrimers in catalysis. , 2001, Chemical reviews.
[22] M. G. Finn,et al. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. , 2001, Angewandte Chemie.
[23] K. Sharpless,et al. Click-Chemie: diverse chemische Funktionalität mit einer Handvoll guter Reaktionen , 2001 .
[24] Joost N. H. Reek,et al. Übergangsmetallkatalyse mit funktionalisierten Dendrimeren , 2001 .
[25] J. Reek,et al. Transition Metal Catalysis Using Functionalized Dendrimers. , 2001, Angewandte Chemie.
[26] Philip A. Gale,et al. Erkennung und Nachweis von Anionen: gegenwärtiger Stand und Perspektiven , 2001 .
[27] Philip A. Gale,et al. Anion Recognition and Sensing: The State of the Art and Future Perspectives. , 2001, Angewandte Chemie.
[28] L. Djakovitch,et al. The First Organometallic Dendrimers: Design and Redox Functions , 2000 .
[29] G. Newkome,et al. Suprasupermolecules with Novel Properties: Metallodendrimers. , 1999, Chemical reviews.
[30] L. Djakovitch,et al. Organoiron Route to a New Dendron for Fast Dendritic Syntheses Using Divergent and Convergent Methods , 1999 .
[31] Chungkyun Kim,et al. Synthesis of carbosilane dendrimers based on tetrakis(phenylethynyl)silane , 1998 .
[32] P. Beer. Transition-Metal Receptor Systems for the Selective Recognition and Sensing of Anionic Guest Species , 1998 .
[33] D. Astruc,et al. The Dendritic Effect in Molecular Recognition: Ferrocene Dendrimers and Their Use as Supramolecular Redox Sensors for the Recognition of Small Inorganic Anions , 1997 .
[34] T. Wagner,et al. Hexakis(but‐3‐inyl)benzol , 1996 .
[35] T. Wagner,et al. Hexakis(but-3-ynyl)benzene† , 1996 .
[36] Nathalie Launay,et al. Phosphorus-Containing Dendrimers. Easy Access to New Multi-Difunctionalized Macromolecules. , 1996, The Journal of organic chemistry.
[37] D. Astruc,et al. Single‐Step Six‐Electron Transfer in a Heptanuclear Complex: Isolation of Both Redox Forms , 1995 .
[38] D. Astruc,et al. Einstufiger Sechs-Elektronen-Transfer in einem siebenkernigen Eisenkomplex: Isolierung beider Redoxformen†‡ , 1994 .
[39] E. Meijer,et al. Encapsulation of Guest Molecules into a Dendritic Box , 1994, Science.
[40] Jeffrey S. Moore,et al. A convenient masking group for aryl iodides , 1991 .
[41] Jeffrey S. Moore,et al. Synthesis of rigid dendritic macromolecules: enlarging the repeat unit size as a function of generation, permitting growth to continue , 1991 .
[42] Gregory R. Baker,et al. Alkan‐Kaskadenpolymere mit einer Micellen‐Topologie: Micellansäure‐Derivate , 1991 .
[43] Andrew L. Johnson,et al. Alkane Cascade Polymers Possessing Micellar Topology: Micellanoic Acid Derivatives , 1991 .
[44] D. A. Gustowski,et al. Rationalization of the unusual electrochemical behavior observed in lariat ethers and other reducible macrocyclic systems , 1988 .
[45] A. Bard,et al. Electron transfer to and from molecules containing multiple, noninteracting redox centers. Electrochemical oxidation of poly(vinylferrocene) , 1978 .
[46] R. Huisgen. Cycloadditionen — Begriff, Einteilung und Kennzeichnung , 1968 .
[47] R. Huisgen. Cycloadditions — Definition, Classification, and Characterization , 1968 .
[48] H. Hiemstra,et al. CuI‐Catalyzed Alkyne–Azide “Click” Cycloadditions from a Mechanistic and Synthetic Perspective , 2005 .
[49] Jae Wook Lee,et al. A facile route to triazole dendrimers via click chemistry linking tripodal acetylene and dendrons , 2005 .
[50] H. Nishihara,et al. Preparation of palladium nanoparticles functionalized with biferrocene thiol derivatives and their electro-oxidative deposition , 2001 .