Hydrodynamic shear thickening of particulate suspension under confinement

Abstract We study the rheology of dense suspensions of non-Brownian repulsive particles. The suspensions consist of two-dimensional discoidal particles confined by walls orthogonal to the shear gradient direction and are simulated by the method of smoothed particle hydrodynamics. The strength of hydrodynamic shear thickening is primarily determined by the distribution of hydrodynamic clusters formed during shear flow while confinement plays a geometrical role and indirectly affects viscosity. Under strong confinement a percolating network of clusters develops into a jamming structure at high shear rate and as a result, the viscosity increases substantially. Extrapolating the viscosity to the limit of very weak confinement shows that confinement is essential to observe hydrodynamic shear thickening in these non-Brownian suspensions.

[1]  David T. Leighton,et al.  The characterization of the total stress of concentrated suspensions of noncolloidal spheres in Newtonian fluids , 2000 .

[2]  J. Monaghan Simulating Free Surface Flows with SPH , 1994 .

[3]  E. Brown,et al.  Through Thick and Thin , 2011, Science.

[4]  Daniel Bonn,et al.  Shear thickening of cornstarch suspensions as a reentrant jamming transition. , 2007, Physical review letters.

[5]  R. C. Ball,et al.  Lubrication breakdown in hydrodynamic simulations of concentrated colloids , 1995 .

[6]  V. Springel Smoothed Particle Hydrodynamics in Astrophysics , 2010, 1109.2219.

[7]  John F. Brady,et al.  The Einstein viscosity correction in n dimensions , 1983 .

[8]  Nikolaus A. Adams,et al.  Multiscale modeling of particle in suspension with smoothed dissipative particle dynamics , 2012 .

[9]  N. Wagner,et al.  Material properties of the shear-thickened state in concentrated near hard-sphere colloidal dispersions , 2014 .

[10]  G. Batchelor,et al.  The hydrodynamic interaction of two small freely-moving spheres in a linear flow field , 1972, Journal of Fluid Mechanics.

[11]  D. Quemada,et al.  Rheology of concentrated disperse systems and minimum energy dissipation principle , 1977 .

[12]  Gerhard Gompper,et al.  Predicting human blood viscosity in silico , 2011, Proceedings of the National Academy of Sciences.

[13]  John F. Brady,et al.  The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation , 1985, Journal of Fluid Mechanics.

[14]  Ivo F. Sbalzarini,et al.  PPM - A highly efficient parallel particle-mesh library for the simulation of continuum systems , 2006, J. Comput. Phys..

[15]  Eric D. Wetzel,et al.  The ballistic impact characteristics of Kevlar® woven fabrics impregnated with a colloidal shear thickening fluid , 2003 .

[16]  John F. Brady,et al.  Rheology and microstructure in concentrated noncolloidal suspensions , 2002 .

[17]  Pep Español,et al.  Smoothed dissipative particle dynamics. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  John F. Brady,et al.  Microstructure of strongly sheared suspensions and its impact on rheology and diffusion , 1997, Journal of Fluid Mechanics.

[19]  Thomas J. Dougherty,et al.  A Mechanism for Non‐Newtonian Flow in Suspensions of Rigid Spheres , 1959 .

[20]  A. Ladd,et al.  Lattice-Boltzmann Simulations of Particle-Fluid Suspensions , 2001 .

[21]  A. Ladd,et al.  Lubrication corrections for lattice-Boltzmann simulations of particle suspensions. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Kenneth W. Desmond,et al.  Random close packing of disks and spheres in confined geometries. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  R. Larson The Structure and Rheology of Complex Fluids , 1998 .

[24]  J. Brady,et al.  Stokesian Dynamics simulation of Brownian suspensions , 1996, Journal of Fluid Mechanics.

[25]  D. I. Dratler,et al.  Dynamic simulation of suspensions of non-Brownian hard spheres , 1996, Journal of Fluid Mechanics.

[26]  N. Wagner,et al.  Shear thickening in colloidal dispersions , 2009 .

[27]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[28]  P. Lindner,et al.  Rheological and small angle neutron scattering investigation of shear‐induced particle structures of concentrated polymer dispersions submitted to plane Poiseuille and Couette flowa) , 1992 .

[29]  C. Zukoski,et al.  Gap size and shear history dependencies in shear thickening of a suspension ordered at rest , 1995 .

[30]  Nikolaus A. Adams,et al.  SPH simulations of flow around a periodic array of cylinders confined in a channel , 2011 .

[31]  Heinrich M. Jaeger,et al.  The role of dilation and confining stresses in shear thickening of dense suspensions , 2010, 1010.4921.

[32]  Xiang Cheng,et al.  Imaging the Microscopic Structure of Shear Thinning and Thickening Colloidal Suspensions , 2011, Science.

[33]  John F. Brady,et al.  Dynamic simulation of sheared suspensions. I. General method , 1984 .

[34]  Boo Cheong Khoo,et al.  Numerical investigations on the compressibility of a DPD fluid , 2013, J. Comput. Phys..

[35]  Francis Gadala-Maria,et al.  Fore‐and‐Aft Asymmetry in a Concentrated Suspension of Solid Spheres , 1987 .

[36]  Jonathan W. Bender,et al.  Reversible shear thickening in monodisperse and bidisperse colloidal dispersions , 1996 .

[37]  Guirong Liu,et al.  Smoothed Particle Hydrodynamics: A Meshfree Particle Method , 2003 .

[38]  N. Wagner,et al.  Colloidal Suspension Rheology: Frontmatter , 2011 .

[39]  P. Nott,et al.  Experimental measurements of the normal stresses in sheared Stokesian suspensions , 2003, Journal of Fluid Mechanics.

[40]  Kazem V Edmond,et al.  Colloidal glass transition observed in confinement. , 2007, Physical review letters.

[41]  J. Brady,et al.  Structure, diffusion and rheology of Brownian suspensions by Stokesian Dynamics simulation , 2000, Journal of Fluid Mechanics.

[42]  F. Peters,et al.  Microstructure in sheared non-Brownian concentrated suspensions , 2013 .

[43]  Pandurang M Kulkarni,et al.  Suspension properties at finite Reynolds number from simulated shear flow , 2008 .

[44]  J. Brady,et al.  The rheology of Brownian suspensions , 1989 .

[45]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[46]  N. Wagner,et al.  Flow-small angle neutron scattering measurements of colloidal dispersion microstructure evolution through the shear thickening transition , 2002 .

[47]  John F. Brady,et al.  Accelerated Stokesian dynamics: Brownian motion , 2003 .

[48]  James G. Berryman,et al.  Random close packing of hard spheres and disks , 1983 .

[49]  Robin Ball,et al.  Continuous shear thickening transitions in model concentrated colloids—The role of interparticle forces , 2004 .

[50]  N. Wagner,et al.  Optical Measurement of the Contributions of Colloidal Forces to the Rheology of Concentrated Suspensions , 1995 .

[51]  I. Krieger,et al.  Rheology of monodisperse latices , 1972 .

[52]  Daniel J. Price Smoothed particle hydrodynamics and magnetohydrodynamics , 2010, J. Comput. Phys..

[53]  Huafeng Liu,et al.  Meshfree Particle Methods , 2004 .

[54]  Xin Bian,et al.  A splitting integration scheme for the SPH simulation of concentrated particle suspensions , 2014, Comput. Phys. Commun..

[55]  Wook Ryol Hwang,et al.  Direct simulation of particle suspensions in sliding bi-periodic frames , 2004 .

[56]  R. V. D. Sman,et al.  Lattice Boltzmann simulation of 2D and 3D non-Brownian suspensions in Couette flow , 2006 .

[57]  Jan Mewis,et al.  Current trends in suspension rheology , 2009 .

[58]  J. Morris,et al.  Modeling Low Reynolds Number Incompressible Flows Using SPH , 1997 .

[59]  R. C. Ball,et al.  THE PATHOLOGICAL BEHAVIOUR OF SHEARED HARD SPHERES WITH HYDRODYNAMIC INTERACTIONS , 1995 .

[60]  H. A. Barnes,et al.  Shear‐Thickening (“Dilatancy”) in Suspensions of Nonaggregating Solid Particles Dispersed in Newtonian Liquids , 1989 .

[61]  P. B. Warren,et al.  DISSIPATIVE PARTICLE DYNAMICS : BRIDGING THE GAP BETWEEN ATOMISTIC AND MESOSCOPIC SIMULATION , 1997 .

[63]  C. Filippi,et al.  Minimum energy pathways via quantum Monte Carlo. , 2012, The Journal of chemical physics.

[64]  R. Mari,et al.  Discontinuous shear thickening of frictional hard-sphere suspensions. , 2013, Physical review letters.

[65]  J. Brady,et al.  The hydrodynamics of confined dispersions , 2011, Journal of Fluid Mechanics.