Hybridizing Raviart-Thomas Elements for the Helmholtz Equation
暂无分享,去创建一个
[1] Raytcho D. Lazarov,et al. Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..
[2] Cornelis Vuik,et al. A Novel Multigrid Based Preconditioner For Heterogeneous Helmholtz Problems , 2005, SIAM J. Sci. Comput..
[3] Charbel Farhat,et al. Higher‐order extensions of a discontinuous Galerkin method for mid‐frequency Helmholtz problems , 2004 .
[4] P. Bettess,et al. Plane-wave basis finite elements and boundary elements for three-dimensional wave scattering , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[5] Mark Ainsworth,et al. Discrete Dispersion Relation for hp-Version Finite Element Approximation at High Wave Number , 2004, SIAM J. Numer. Anal..
[6] Bruno Després,et al. Using Plane Waves as Base Functions for Solving Time Harmonic Equations with the Ultra Weak Variational Formulation , 2003 .
[7] Charbel Farhat,et al. A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime , 2003 .
[8] J. Kaipio,et al. Computational aspects of the ultra-weak variational formulation , 2002 .
[9] L. Demkowicz,et al. De Rham diagram for hp finite element spaces , 2000 .
[10] F. Ihlenburg. Finite Element Analysis of Acoustic Scattering , 1998 .
[11] O. Cessenat,et al. Application of an Ultra Weak Variational Formulation of Elliptic PDEs to the Two-Dimensional Helmholtz Problem , 1998 .
[12] I. Babuska,et al. The Partition of Unity Method , 1997 .
[13] J. Nédélec. Mixed finite elements in ℝ3 , 1980 .
[14] R. Hiptmair,et al. Plane Wave Discontinuous Galerkin Methods , 2007 .
[15] Pablo Gamallo,et al. Comparison of two wave element methods for the Helmholtz problem , 2006 .
[16] Ronald H. W. Hoppe,et al. Finite element methods for Maxwell's equations , 2005, Math. Comput..
[17] Daniele Boffi,et al. On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form , 2000, Math. Comput..
[18] Olivier Cessenat,et al. Application d'une nouvelle formulation variationnelle aux équations d'ondes harmoniques : problèmes de Helmholtz 2D et de Maxwell 3D , 1996 .
[19] B. Després,et al. SUR UNE FORMULATION VARIATIONNELLE DE TYPE ULTRA-FAIBLE , 1994 .
[20] Jean E. Roberts,et al. Mixed and hybrid finite element methods , 1987 .
[21] D. Arnold,et al. Mixed and nonconforming finite element methods : implementation, postprocessing and error estimates , 1985 .
[22] F. Thomasset. Finite element methods for Navier-Stokes equations , 1980 .
[23] P. Raviart,et al. A mixed finite element method for 2-nd order elliptic problems , 1977 .