Hybridizing Raviart-Thomas Elements for the Helmholtz Equation

Abstract This article deals with the application of hybridized mixed methods for discretizing the Helmholtz problem, which allows for a fast, iterative solution, from a mixed formulation using Raviart-Thomas finite elements. Two ways of hybridizing the problem are presented, which means breaking the normal continuity of the fluxes and imposing it weakly via functions supported on the element interfaces. The first method is the ultra-weak variational formulation, first introduced by Cessenat and Després (1998); the second one uses Lagrange multipliers. Good behavior of iterative solvers is observed for both methods, as well as for high wave numbers.

[1]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[2]  Cornelis Vuik,et al.  A Novel Multigrid Based Preconditioner For Heterogeneous Helmholtz Problems , 2005, SIAM J. Sci. Comput..

[3]  Charbel Farhat,et al.  Higher‐order extensions of a discontinuous Galerkin method for mid‐frequency Helmholtz problems , 2004 .

[4]  P. Bettess,et al.  Plane-wave basis finite elements and boundary elements for three-dimensional wave scattering , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[5]  Mark Ainsworth,et al.  Discrete Dispersion Relation for hp-Version Finite Element Approximation at High Wave Number , 2004, SIAM J. Numer. Anal..

[6]  Bruno Després,et al.  Using Plane Waves as Base Functions for Solving Time Harmonic Equations with the Ultra Weak Variational Formulation , 2003 .

[7]  Charbel Farhat,et al.  A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime , 2003 .

[8]  J. Kaipio,et al.  Computational aspects of the ultra-weak variational formulation , 2002 .

[9]  L. Demkowicz,et al.  De Rham diagram for hp finite element spaces , 2000 .

[10]  F. Ihlenburg Finite Element Analysis of Acoustic Scattering , 1998 .

[11]  O. Cessenat,et al.  Application of an Ultra Weak Variational Formulation of Elliptic PDEs to the Two-Dimensional Helmholtz Problem , 1998 .

[12]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[13]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[14]  R. Hiptmair,et al.  Plane Wave Discontinuous Galerkin Methods , 2007 .

[15]  Pablo Gamallo,et al.  Comparison of two wave element methods for the Helmholtz problem , 2006 .

[16]  Ronald H. W. Hoppe,et al.  Finite element methods for Maxwell's equations , 2005, Math. Comput..

[17]  Daniele Boffi,et al.  On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form , 2000, Math. Comput..

[18]  Olivier Cessenat,et al.  Application d'une nouvelle formulation variationnelle aux équations d'ondes harmoniques : problèmes de Helmholtz 2D et de Maxwell 3D , 1996 .

[19]  B. Després,et al.  SUR UNE FORMULATION VARIATIONNELLE DE TYPE ULTRA-FAIBLE , 1994 .

[20]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[21]  D. Arnold,et al.  Mixed and nonconforming finite element methods : implementation, postprocessing and error estimates , 1985 .

[22]  F. Thomasset Finite element methods for Navier-Stokes equations , 1980 .

[23]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .