Anisotropic Diffusion for Hyperspectral Imagery Enhancement

Among all enhancement techniques being developed over the past two decades, anisotropic diffusion has received much attention and experienced significant developments, with promising results and applications in various specific domains. The elegant property of the technique is that it can enhance images by reducing undesirable intensity variability within the objects in the image, while improving SNR and enhancing the contrast of the edges in scalar and, more recently, vector-valued images, such as color, multispectral, and hyperspectral imagery. In this paper, we present an alternative hyperspectral anisotropic diffusion scheme that takes into account the recent advances and the specificities of hyperspectral remote sensing. In addition, the proposed anisotropic diffusion algorithm can improve the classification accuracy of hyperspectral imagery by reducing the spatial and spectral variability of the image, while preserving the edges of objects. It is also revealed that the additive operator splitting scheme of our method can increase computer efficiency. Qualitative experiments, based on a real hyperspectral remote sensing image, show significant improvements in visual effects when using our method. Quantitative analyses, based on classification accuracies, confirm the superiority and validity of the proposed diffusion algorithm.

[1]  Grégoire Mercier,et al.  Nonlinear filtering of hyperspectral images with anisotropic diffusion , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[2]  Wenyuan Xu,et al.  Behavioral analysis of anisotropic diffusion in image processing , 1996, IEEE Trans. Image Process..

[3]  Pavel Mrázek Selection of Optimal Stopping Time for Nonlinear Diffusion Filtering , 2001, Scale-Space.

[4]  Scott T. Acton,et al.  Modified mean curvature motion for multispectral anisotropic diffusion , 1998, 1998 IEEE Southwest Symposium on Image Analysis and Interpretation (Cat. No.98EX165).

[5]  Joachim Weickert,et al.  Coherence-Enhancing Diffusion Filtering , 1999, International Journal of Computer Vision.

[6]  Bogdan Smolka,et al.  ON THE COMBINED FORWARD AND BACKWARD ANISOTROPIC DIFFUSION SCHEME FOR THE MULTISPECTRAL IMAGE ENHANCEMENT , 2002 .

[7]  Rachid Deriche,et al.  Vector-valued image regularization with PDEs: a common framework for different applications , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Liangpei Zhang,et al.  Nonlinear multispectral anisotropic diffusion filters for remote sensed images based on MDL and morphology , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[9]  F. Voci,et al.  Estimating the gradient in the Perona-Malik equation , 2004, IEEE Signal Processing Magazine.

[10]  S. Acton,et al.  Multi-spectral anisotropic diffusion , 1997 .

[11]  Miguel Velez-Reyes,et al.  Comparative Study of Semi-Implicit Schemes for Nonlinear Diffusion in Hyperspectral Imagery , 2007, IEEE Transactions on Image Processing.

[12]  G. Sapiro,et al.  Geometric partial differential equations and image analysis [Book Reviews] , 2001, IEEE Transactions on Medical Imaging.

[13]  P. Lions,et al.  Axioms and fundamental equations of image processing , 1993 .

[14]  Tony Lindeberg,et al.  Feature Detection with Automatic Scale Selection , 1998, International Journal of Computer Vision.

[15]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[16]  Joachim Weickert,et al.  Theoretical Foundations of Anisotropic Diffusion in Image Processing , 1994, Theoretical Foundations of Computer Vision.

[17]  Joachim Weickert,et al.  A Review of Nonlinear Diffusion Filtering , 1997, Scale-Space.

[18]  Aldo Cumani,et al.  Edge detection in multispectral images , 1991, CVGIP Graph. Model. Image Process..

[19]  Yehoshua Y. Zeevi,et al.  Forward-and-backward diffusion processes for adaptive image enhancement and denoising , 2002, IEEE Trans. Image Process..

[20]  Silvano Di Zenzo,et al.  A note on the gradient of a multi-image , 1986, Comput. Vis. Graph. Image Process..

[21]  Bruce Fischl,et al.  Adaptive Nonlocal Filtering: A Fast Alternative to Anisotropic Diffusion for Image Enhancement , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Ke Chen,et al.  Adaptive smoothing via contextual and local discontinuities , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Scott T. Acton,et al.  Multigrid anisotropic diffusion , 1998, IEEE Trans. Image Process..

[24]  Jayaram K. Udupa,et al.  Scale-Based Diffusive Image Filtering Preserving Boundary Sharpness and Fine Structures , 2002, IEEE Trans. Medical Imaging.

[25]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[26]  Steven W. Zucker,et al.  Local Scale Control for Edge Detection and Blur Estimation , 1996, ECCV.

[27]  David R. Kaeli,et al.  A MATLAB toolbox for Hyperspectral Image Analysis , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[28]  Guillermo Sapiro,et al.  Edges as Outliers: Anisotropic Smoothing Using Local Image Statistics , 1999, Scale-Space.

[29]  Julio Martín-Herrero,et al.  Anisotropic Diffusion in the Hypercube , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[30]  Rachid Deriche,et al.  Diffusion PDEs on vector-valued images , 2002, IEEE Signal Process. Mag..

[31]  Guillermo Sapiro,et al.  Anisotropic diffusion of multivalued images with applications to color filtering , 1996, IEEE Trans. Image Process..

[32]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[33]  Yi Wang,et al.  Local Variance-Controlled Forward-and-Backward Diffusion for Image Enhancement and Noise Reduction , 2007, IEEE Transactions on Image Processing.

[34]  Yehoshua Y. Zeevi,et al.  Image enhancement segmentation and denoising by time dependent nonlinear diffusion processes , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[35]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[36]  J. Weickert Applications of nonlinear diffusion in image processing and computer vision , 2000 .

[37]  Andrew P. Witkin,et al.  Uniqueness of the Gaussian Kernel for Scale-Space Filtering , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Andrea J. van Doorn,et al.  Generic Neighborhood Operators , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  David A. Landgrebe,et al.  Signal Theory Methods in Multispectral Remote Sensing , 2003 .

[40]  Alan L. Yuille,et al.  Scaling Theorems for Zero Crossings , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  Scott T. Acton,et al.  Locally monotonic diffusion , 2000, IEEE Trans. Signal Process..

[42]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  Max A. Viergever,et al.  Efficient and reliable schemes for nonlinear diffusion filtering , 1998, IEEE Trans. Image Process..

[44]  Guido Gerig,et al.  Nonlinear anisotropic filtering of MRI data , 1992, IEEE Trans. Medical Imaging.

[45]  Xiaoping Li,et al.  Nonlinear diffusion with multiple edginess thresholds , 1994, Pattern Recognit..

[46]  Guillermo Sapiro,et al.  Robust anisotropic diffusion , 1998, IEEE Trans. Image Process..

[47]  Andrew P. Witkin,et al.  Scale-space filtering: A new approach to multi-scale description , 1984, ICASSP.

[48]  Atsushi Imiya,et al.  Linear Scale-Space has First been Proposed in Japan , 1999, Journal of Mathematical Imaging and Vision.

[49]  Tony F. Chan,et al.  Color TV: total variation methods for restoration of vector-valued images , 1998, IEEE Trans. Image Process..

[50]  L. Álvarez,et al.  Signal and image restoration using shock filters and anisotropic diffusion , 1994 .

[51]  Ross T. Whitaker,et al.  A multi-scale approach to nonuniform diffusion , 1993 .