Simplified CSP analysis of a stiff stochastic ODE system

Abstract We develop a simplified computational singular perturbation (CSP) analysis of a stochastic dynamical system. We focus on the case of parametric uncertainty, and rely on polynomial chaos (PC) representations to quantify its impact. We restrict our attention to a system that exhibits distinct timescales, and that tends to a deterministic steady state irrespective of the random inputs. A detailed analysis of eigenvalues and eigenvectors of the stochastic system Jacobian is conducted, which provides a relationship between the PC representation of the stochastic Jacobian and the Jacobian of the Galerkin form of the stochastic system. The analysis is then used to guide the application of a simplified CSP formalism that is based on relating the slow and fast manifolds of the uncertain system to those of a nominal deterministic system. Two approaches are specifically developed with the resulting simplified CSP framework. The first uses the stochastic eigenvectors of the uncertain system as CSP vectors, whereas the second uses the eigenvectors of the nominal system as CSP vectors. Numerical experiments are conducted to demonstrate the results of the stochastic eigenvalue and eigenvector analysis, and illustrate the effectiveness of the simplified CSP algorithms in addressing the stiffness of the system dynamics.

[1]  S. H. Lam,et al.  Singular Perturbation for Stiff Equations Using Numerical Methods , 1985 .

[2]  Marcos Chaos,et al.  Computational singular perturbation analysis of two-stage ignition of large hydrocarbons. , 2006, The journal of physical chemistry. A.

[3]  Habib N. Najm,et al.  Numerical Challenges in the Use of Polynomial Chaos Representations for Stochastic Processes , 2005, SIAM J. Sci. Comput..

[4]  Habib N. Najm,et al.  Multiscale Stochastic Preconditioners in Non-intrusive Spectral Projection , 2012, J. Sci. Comput..

[5]  Eugene E. Tyrtyshnikov,et al.  Matrix methods : theory, algorithms and applications : dedicated to the memory of Gene Golub , 2010 .

[6]  O. Kallenberg Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.

[7]  R. D. Berry,et al.  Eigenvalues of the Jacobian of a Galerkin-Projected Uncertain ODE System , 2011, SIAM J. Sci. Comput..

[8]  Tianfeng Lu,et al.  Complex CSP for Chemistry Reduction and Analysis , 2001 .

[9]  Jim Hefferon,et al.  Linear Algebra , 2012 .

[10]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[11]  W. T. Martin,et al.  The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .

[12]  Adi Ben-Israel,et al.  An iterative method for computing the generalized inverse of an arbitrary matrix , 1965 .

[13]  Editors , 1986, Brain Research Bulletin.

[14]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .

[15]  David Williams,et al.  Probability with Martingales , 1991, Cambridge mathematical textbooks.

[16]  O. L. Maître,et al.  Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .

[17]  Habib N. Najm,et al.  An automatic procedure for the simplification of chemical kinetic mechanisms based on CSP , 2006 .

[18]  C. Law,et al.  Ignition of counterflowing methane versus heated air under reduced and elevated pressures , 1997 .

[19]  S. H. Lam,et al.  A study of homogeneous methanol oxidation kinetics using CSP , 1992 .

[20]  S. Lam,et al.  The CSP method for simplifying kinetics , 1994 .

[21]  H. Najm,et al.  Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection , 2003 .

[22]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[23]  S. Janson Gaussian Hilbert Spaces , 1997 .

[24]  Habib N. Najm,et al.  Skeletal mechanism generation and analysis for n-heptane with CSP , 2007 .

[25]  Habib N. Najm,et al.  Higher order corrections in the approximation of low-dimensional manifolds and the construction of simplified problems with the CSP method , 2005 .

[26]  Muruhan Rathinam,et al.  A New Look at Proper Orthogonal Decomposition , 2003, SIAM J. Numer. Anal..

[27]  Habib N. Najm,et al.  Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics , 2009 .

[28]  W. Greub Linear Algebra , 1981 .

[29]  Tianfeng Lu,et al.  A criterion based on computational singular perturbation for the identification of quasi steady state species: A reduced mechanism for methane oxidation with NO chemistry , 2008 .

[30]  Roger Ghanem,et al.  Efficient characterization of the random eigenvalue problem in a polynomial chaos decomposition , 2007 .

[31]  Habib N. Najm,et al.  CSP analysis of a transient flame-vortex interaction: time scales and manifolds , 2003 .

[32]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[33]  Adi Ben-Israel,et al.  On Iterative Computation of Generalized Inverses and Associated Projections , 1966 .

[34]  Y. Marzouk,et al.  Uncertainty quantification in chemical systems , 2009 .

[35]  H. Najm,et al.  A stochastic projection method for fluid flow II.: random process , 2002 .

[36]  H. P. Decell,et al.  An iterative method for computing the generalized inverse of a matrix , 1966 .

[37]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[38]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[39]  S. H. Lam,et al.  Using CSP to Understand Complex Chemical Kinetics ∗ , 1992 .

[40]  H. Najm,et al.  Chemical kinetics mechanism simplification via CSP , 2005 .

[41]  Pol D. Spanos,et al.  Spectral Stochastic Finite-Element Formulation for Reliability Analysis , 1991 .

[42]  Dimitris A. Goussis,et al.  On the Construction and Use of Reduced Chemical Kinetic Mechanisms Produced on the Basis of Given Algebraic Relations , 1996 .

[43]  Mauro Valorani,et al.  Explicit time-scale splitting algorithm for stiff problems: auto-ignition of gaseous mixtures behind a steady shock , 2001 .

[44]  Habib N. Najm,et al.  Multi-Resolution-Analysis Scheme for Uncertainty Quantification in Chemical Systems , 2007, SIAM J. Sci. Comput..

[45]  R. Ghanem,et al.  A stochastic projection method for fluid flow. I: basic formulation , 2001 .

[46]  T. Nagashima,et al.  Stochastic Eigenvalue Analysis by SFEM Code “SAINT” , 1991 .

[47]  H. Najm,et al.  Reactive and reactive-diffusive time scales in stiff reaction-diffusion systems , 2005 .

[48]  Alexandre Ern,et al.  Intrusive Galerkin methods with upwinding for uncertain nonlinear hyperbolic systems , 2010, J. Comput. Phys..

[49]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[50]  S. H. Lam,et al.  Understanding complex chemical kinetics with computational singular perturbation , 1989 .

[51]  N. Wiener The Homogeneous Chaos , 1938 .