Comparison of MRI- and CT-based semiautomated liver segmentation: a validation study

PurposeTo compare the repeatability, agreement, and efficiency of MRI- and CT-based semiautomated liver segmentation for the assessment of total and subsegmental liver volume.MethodsThis retrospective study was conducted in 31 subjects who underwent contemporaneous liver MRI and CT. Total and subsegmental liver volumes were segmented from contrast-enhanced 3D gradient-recalled echo MRI sequences and CT images. Semiautomated segmentation was based on variational interpolation and Laplacian mesh optimization. All segmentations were repeated after 2 weeks. Manual segmentation of CT images using an active contour tool was used as the reference standard. Repeatability and agreement of the methods were evaluated with intra-class correlation coefficients (ICC) and Bland–Altman analysis. Total interaction time was recorded.ResultsIntra-reader ICC were ≥0.987 for MRI and ≥0.995 for CT. Intra-reader repeatability was 30 ± 217 ml (bias ± 1.96 SD) (95% limits of agreement: −187 to 247 ml) for MRI and −10 ± 143 ml (−153 to 133 ml) for CT. Inter-method ICC between semiautomated and manual volumetry were ≥0.995 for MRI and ≥0.986 for CT. Inter-method segmental ICC varied between 0.584 and 0.865 for MRI and between 0.596 and 0.890 for CT. Inter-method agreement was –14 ± 136 ml (−150 to 122 ml) for MRI and 50 ± 226 ml (−176 to 276 ml) for CT. Inter-method segmental agreement ranged from 10 ± 47 ml (−37 to 57 ml) to 2 ± 214 ml (−212 to 216 ml) for MRI and 9 ± 45 ml (−36 to 54 ml) to −46 ± 183 ml (−229 to 137 ml) for CT. Interaction time (mean ± SD) was significantly shorter for MRI-based semiautomated segmentation (7.2 ± 0.1 min, p < 0.001) and for CT-based semiautomated segmentation (6.5 ± 0.2 min, p < 0.001) than for CT-based manual segmentation (14.5 ± 0.4 min).ConclusionMRI-based semiautomated segmentation provides similar repeatability and agreement to CT-based segmentation for total liver volume.

[1]  Gilles Soulez,et al.  Simultaneous assessment of liver volume and whole liver fat content: a step towards one-stop shop preoperative MRI protocol , 2011, European Radiology.

[2]  D. Altman,et al.  STATISTICAL METHODS FOR ASSESSING AGREEMENT BETWEEN TWO METHODS OF CLINICAL MEASUREMENT , 1986, The Lancet.

[3]  P Stolzmann,et al.  CT- and MRI-based volumetry of resected liver specimen: comparison to intraoperative volume and weight measurements and calculation of conversion factors. , 2010, European journal of radiology.

[4]  Bunyamin Sahin,et al.  Assessment of the optimum section thickness for the estimation of liver volume using magnetic resonance images: a stereological gold standard study. , 2006, European journal of radiology.

[5]  M. Galanski,et al.  CT-basierte Lebervolumetrie im Tiermodell: Bedeutung für die klinische Volumetrie im Rahmen der Leberlebendspende , 2004 .

[6]  Kevin J Chang,et al.  Liver and spleen volumetry with quantitative MR imaging and dual-space clustering segmentation. , 2005, Radiology.

[7]  Heinz-Otto Peitgen,et al.  Interactive 3D medical image segmentation with energy-minimizing implicit functions , 2011, Comput. Graph..

[8]  Aytekin Oto,et al.  Computerized liver volumetry on MRI by using 3D geodesic active contour segmentation. , 2014, AJR. American journal of roentgenology.

[9]  Hans-Peter Meinzer,et al.  Active Shape Models for a Fully Automated 3D Segmentation of the Liver - An Evaluation on Clinical Data , 2006, MICCAI.

[10]  Kenji Suzuki,et al.  Computerized segmentation of liver in hepatic CT and MRI by means of level-set geodesic active contouring , 2013, 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[11]  Martin Styner,et al.  Comparison and Evaluation of Methods for Liver Segmentation From CT Datasets , 2009, IEEE Transactions on Medical Imaging.

[12]  Aytekin Oto,et al.  Quantitative radiology: automated CT liver volumetry compared with interactive volumetry and manual volumetry. , 2011, AJR. American journal of roentgenology.

[13]  Joon Beom Seo,et al.  Ecient Liver Segmentation exploiting Level-Set Speed Images with 2.5D Shape Propagation , 2007 .

[14]  Kuni Ohtomo,et al.  Liver CT image processing: a short introduction of the technical elements. , 2006, European journal of radiology.

[15]  B. Hamm,et al.  Liver volume measurement: reason of the difference between in vivo CT-volumetry and intraoperative ex vivo determination and how to cope it , 2010, European journal of medical research.

[16]  Rohit Loomba,et al.  Cross-sectional and longitudinal evaluation of liver volume and total liver fat burden in adults with nonalcoholic steatohepatitis , 2014, Abdominal Imaging.

[17]  L. Tanoue Computed Tomography — An Increasing Source of Radiation Exposure , 2009 .

[18]  C. Bodian,et al.  Accuracy and significance of computed tomographic scan assessment of hepatic volume in patients undergoing liver transplantation. , 2000, Transplantation.

[19]  Luca Viganò,et al.  Postoperative Liver Dysfunction and Future Remnant Liver: Where Is the Limit? , 2007, World Journal of Surgery.

[20]  D. Brenner,et al.  Effect of Colesevelam on Liver Fat Quantified by Magnetic Resonance in Nonalcoholic Steatohepatitis: A Randomized Controlled Trial , 2012, Hepatology.

[21]  Joachim Hornegger,et al.  Two-stage Semi-automatic Organ Segmentation Framework using Radial Basis Functions and Level Sets , 2007 .

[22]  Kunio Doi,et al.  Automated hepatic volumetry for living related liver transplantation at multisection CT. , 2006, Radiology.

[23]  S. Reeder,et al.  Quantification of liver iron with MRI: State of the art and remaining challenges , 2014, Journal of magnetic resonance imaging : JMRI.

[24]  Makoto Hashizume,et al.  Accurate preoperative estimation of liver-graft volumetry using three-dimensional computed tomography , 2003, Transplantation.

[25]  Thierry Cresson,et al.  SEMI-automated liver CT segmentation using Laplacian meshes , 2014, 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI).

[26]  J. Fujimoto,et al.  Impact of Preoperative Planning Using Virtual Segmental Volumetry on Liver Resection for Hepatocellular Carcinoma , 2007, World Journal of Surgery.

[27]  M. Galanski,et al.  [CT-based liver volumetry in a porcine model: impact on clinical volumetry prior to living donated liver transplantation]. , 2004, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[28]  Elena Casiraghi,et al.  Liver segmentation from computed tomography scans: A survey and a new algorithm , 2009, Artif. Intell. Medicine.

[29]  Peter Neuhaus,et al.  Living donor right liver lobes: preoperative CT volumetric measurement for calculation of intraoperative weight and volume. , 2006, Radiology.

[30]  S. Casciaro,et al.  A new fully automatic and robust algorithm for fast segmentation of liver tissue and tumors from CT scans , 2008, European Radiology.

[31]  James F. O'Brien,et al.  Modelling with implicit surfaces that interpolate , 2005, SIGGRAPH Courses.

[32]  László Ruskó,et al.  Liver segmentation for contrast-enhanced MR images using partitioned probabilistic model , 2010, International Journal of Computer Assisted Radiology and Surgery.

[33]  R Felix,et al.  [Accuracy of the CT-estimated weight of the right hepatic lobe prior to living related liver donation (LRLD) for predicting the intraoperatively measured weight of the graft]. , 2003, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[34]  A. Fulcher,et al.  Right lobe living donor liver transplantation: preoperative evaluation of the donor with MR imaging. , 2001, AJR. American journal of roentgenology.

[35]  S. Reeder,et al.  Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy , 2011, Journal of magnetic resonance imaging : JMRI.

[36]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[37]  Arne-Jörn Lemke,et al.  Voraussagegenauigkeit der präoperativen CT-gestützten Gewichtsbestimmung des rechten Leberlappens bezüglich des intraoperativen Transplantatgewichts bei Leberlappen-Lebendspendern , 2003 .

[38]  Henry Völzke,et al.  A fully automatic three-step liver segmentation method on LDA-based probability maps for multiple contrast MR images. , 2010, Magnetic resonance imaging.

[39]  A. Luciani,et al.  Automated liver volumetry in orthotopic liver transplantation using multiphase acquisitions on MDCT. , 2012, AJR. American journal of roentgenology.

[40]  Florence Morin-Roy,et al.  Validation of a semiautomated liver segmentation method using CT for accurate volumetry. , 2015, Academic radiology.

[41]  Borut Marincek,et al.  Preoperative Liver Volumetry: How Does the Slice Thickness Influence the Multidetector Computed Tomography- and Magnetic Resonance-Liver Volume Measurements? , 2009, Journal of computer assisted tomography.

[42]  B. Dawant,et al.  Liver segmentation in living liver transplant donors: comparison of semiautomatic and manual methods. , 2005, Radiology.

[43]  J. Kullberg,et al.  Stereology: a novel technique for rapid assessment of liver volume , 2012, Insights into Imaging.

[44]  J. Damilakis,et al.  Comparison of two volumetric techniques for estimating liver volume using magnetic resonance imaging , 2002, Journal of magnetic resonance imaging : JMRI.

[45]  Marc Alexa,et al.  Laplacian mesh optimization , 2006, GRAPHITE '06.

[46]  Jayaram K. Udupa,et al.  A framework for evaluating image segmentation algorithms , 2006, Comput. Medical Imaging Graph..