SU-8 2002 Surface Micromachined Deformable Membrane Mirrors

This paper describes two surface micromachining processes, i.e., one using a wet-etch release and the other using a dry-etch release, to create deformable membrane mirrors made from a thin film of low-stress SU-8 2002. The mirrors are designed for electronic focus and aberration control in imaging systems, and exhibit a large range of motion and high optical quality. The processes result in free-standing membrane mirrors with in-plane film stress as low as 12.5 MPa while attaining well-defined lithographic features as small as 3 μm in a 2.5-μm-thick film. We achieved a maximum deflection of 14.8 μm for a 3-mm × 4.24-mm elliptical boundary mirror, limited by electrostatic pull-in. Using a 3-mm × 4.24-mm mirror, which is designed for operation with a circular beam at 45° incidence angle, we demonstrate focus control while compensating spherical aberration in an optical microscope over a depth of 137 μm using a 50× 0.4-NA objective lens.

[1]  Luke P. Lee,et al.  POLYMER-BASED ACTUATORS INTEGRATED INTO MICROFLUIDIC SYSTEMS , 2002 .

[2]  Stephanus Büttgenbach,et al.  Fabrication and investigation of in-plane compliant SU8 structures for MEMS and their application to micro valves and micro grippers , 2002 .

[3]  David L. Dickensheets,et al.  MOEMS deformable mirrors for focus control in vital microscopy , 2011 .

[4]  S. Büttgenbach,et al.  SU8-micromechanical structures with in situ fabricated movable parts , 2002 .

[5]  E. Klokholm Intrinsic Stress in Evaporated Metal Films , 1968 .

[6]  Bo Li,et al.  Low-stress ultra-thick SU-8 UV photolithography process for MEMS , 2005 .

[7]  M. Parameswaran,et al.  Polymer MEMS processing for multi-user applications , 2007 .

[8]  M. Lin,et al.  Design and fabrication of an electrostatically actuated microdeformable focusing mirror , 2011 .

[9]  Steven R. Shaw,et al.  Feedback-stabilized deformable membrane mirrors for focus control , 2009 .

[10]  R. Puers,et al.  Diffusing and swelling in SU-8: insight in material properties and processing , 2010 .

[11]  Tyng-Yow Chen,et al.  Fabrication and Measurement of Low-Stress Polyimide Membrane for High-Resolution Variable Optical Attenuator , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[12]  A. Werber,et al.  Tunable Pneumatic Microoptics , 2008, Journal of Microelectromechanical Systems.

[13]  B. Berge,et al.  Liquid lens technology: principle of electrowetting based lenses and applications to imaging , 2005, 18th IEEE International Conference on Micro Electro Mechanical Systems, 2005. MEMS 2005..

[14]  S. Kuiper,et al.  Variable-focus liquid lens for miniature cameras , 2004 .

[15]  A. M. Jorgensen,et al.  The effect of soft bake temperature on the polymerization of SU-8 photoresist , 2006 .

[16]  Osamu Tabata,et al.  Effects of aperture size and pressure on XeF2 etching of silicon , 2002 .

[17]  Umesh A. Korde Large-displacement Closed-loop Control of Variable Area Electrostatic Actuation for Membrane Reflectors , 2009 .

[18]  David L. Dickensheets,et al.  SU-8 focus control mirrors released by XeF2 dry etch , 2011, MOEMS-MEMS.

[19]  B. Loechel,et al.  Stress engineering and mechanical properties of SU-8-layers for mechanical applications , 2008 .

[20]  David Lämmle,et al.  Surface micro-machined SU-8 2002 membrane mirrors for focus control , 2010, MOEMS-MEMS.

[21]  D. Dickensheets,et al.  Micromachined silicon nitride deformable mirrors for focus control. , 2001, Optics letters.

[22]  N. Chronis,et al.  Electrothermally activated SU-8 microgripper for single cell manipulation in solution , 2005, Journal of Microelectromechanical Systems.

[23]  SU-8 surface-micromachining process utilizing PMGI as a sacrificial material , 2007, 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS).

[24]  Mau-Shiun Yeh,et al.  Miniaturized variable-focus lens fabrication using liquid filling technique , 2008 .

[25]  R. Feng,et al.  Influence of processing conditions on the thermal and mechanical properties of SU8 negative photoresist coatings , 2002 .

[26]  L. Freund,et al.  Thin Film Materials: Stress, Defect Formation and Surface Evolution , 2004 .

[27]  Seung S. Lee,et al.  Focal tunable liquid lens integrated with an electromagnetic actuator , 2007 .

[28]  Guo-Dung John Su,et al.  A low voltage deformable mirror using ionic-polymer metal composite , 2010, Optical Engineering + Applications.

[29]  H. Zappe,et al.  Deformable Polymer Adaptive Optical Mirrors , 2008, Journal of Microelectromechanical Systems.

[30]  Justin D. Mansell,et al.  Evaluation of polymer membrane deformable mirrors for high peak power laser machining applications , 2010, Optical Engineering + Applications.

[31]  Wei-Yao Hsu,et al.  Thin autofocus camera module by a large-stroke micromachined deformable mirror. , 2010, Optics express.

[32]  Guo-Dung John Su,et al.  Polymer Deformable Mirror for Optical Auto Focusing , 2007 .

[33]  A. Boisen,et al.  Fabrication of thin SU-8 cantilevers: initial bending, release and time stability , 2010 .

[34]  Stress in evaporated films used in GaAs processing , 1991 .

[35]  B. A. Troesch,et al.  Eigenfrequencies of an elliptic membrane , 1973 .

[36]  A. Boisen,et al.  Processing of thin SU-8 films , 2008 .

[37]  Victor X D Yang,et al.  Doppler optical coherence tomography with a micro-electro-mechanical membrane mirror for high-speed dynamic focus tracking. , 2006, Optics letters.

[38]  David L. Dickensheets,et al.  Requirements of MEMS membrane mirrors for focus adjustment and aberration correction in endoscopic confocal and optical coherence tomography imaging instruments , 2008 .