Genus Distributions for Iterated Claws

We derive a recursion for the genus distributions of the graphs obtained by iteratively attaching a claw to the dipole $D_3$. The minimum genus of the graphs in this sequence grows arbitrarily large. The families of graphs whose genus distributions have been calculated previously are either planar or almost planar, or they can be obtained by iterative single-vertex or single-edge amalgamation of small graphs. A significant simplifying construction within this calculation achieves the effect of an amalgamation at three vertices with a single root vertex, rather than with multiple roots.

[1]  Jonathan L. Gross,et al.  Embeddings of graphs of fixed treewidth and bounded degree , 2013, Ars Math. Contemp..

[2]  Jonathan L. Gross,et al.  Genus distributions of graphs under self-edge-amalgamations , 2012, Ars Math. Contemp..

[3]  Jonathan L. Gross,et al.  Embeddings of cubic Halin graphs: Genus distributions , 2012, Ars Math. Contemp..

[4]  Jonathan L. Gross,et al.  Genus Distributions of 4-Regular Outerplanar Graphs , 2011, Electron. J. Comb..

[5]  Jonathan L. Gross,et al.  Journal of Graph Algorithms and Applications Genus Distributions of Cubic Outerplanar Graphs , 2022 .

[6]  Jonathan L. Gross,et al.  Genus distributions for bouquets of circles , 1989, J. Comb. Theory, Ser. B.

[7]  Jonathan L. Gross,et al.  Genus distribution of P3□Pn , 2012, Discret. Math..

[8]  Jonathan L. Gross,et al.  Genus distribution of graph amalgamations: self-pasting at root-vertices , 2011, Australas. J Comb..

[9]  A. Kolmogorov Three approaches to the quantitative definition of information , 1968 .

[10]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[11]  Jonathan L. Gross,et al.  Genus distributions of cubic series-parallel graphs , 2014, Discret. Math. Theor. Comput. Sci..

[12]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[13]  Liu Yan-pei,et al.  Genus Distribution for Two Classes of Graphs , 2006 .

[14]  Saul Stahl,et al.  Permutation-partition pairs. III. Embedding distributions of linear families of graphs , 1991, J. Comb. Theory, Ser. B.

[15]  Jonathan L. Gross,et al.  Log-concavity of the genus polynomials of Ringel Ladders , 2015, Electron. J. Graph Theory Appl..

[16]  G. Ringel,et al.  Solution of the heawood map-coloring problem. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Jonathan L. Gross,et al.  Genus distributions of graphs under edge-amalgamations , 2010, Ars Math. Contemp..

[18]  Gregory J. Chaitin,et al.  On the Length of Programs for Computing Finite Binary Sequences , 1966, JACM.

[19]  Jonathan L. Gross,et al.  Iterated claws have real-rooted genus polynomials , 2015, Ars Math. Contemp..

[20]  Jonathan L. Gross,et al.  Hierarchy for imbedding-distribution invariants of a graph , 1987, J. Graph Theory.

[21]  Jonathan L. Gross,et al.  Genus Distribution of Graph Amalgamations: Pasting at Root-Vertices , 2010, Ars Comb..

[22]  Arthur T. White,et al.  On the maximum genus of a graph , 1971 .

[23]  Saul Stahl ON THE ZEROS OF SOME GENUS POLYNOMIALS , 1997 .

[24]  Jonathan L. Gross,et al.  Log-Concavity of Combinations of Sequences and Applications to Genus Distributions , 2014, SIAM J. Discret. Math..