Frames and Extension Problems II

This article is a follow-up on the article Frames and Extension Problems I. Here we will go into more recent progress on the topic and also present some open problems.

[1]  O. Christensen Frames, Riesz bases, and discrete Gabor/wavelet expansions , 2001 .

[2]  A. Ron Review of An introduction to Frames and Riesz bases, applied and numerical Harmonic analysis by Ole Christensen Birkhäuser, Basel, 2003 , 2005 .

[3]  Ingrid Daubechies,et al.  The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.

[4]  C. Chui,et al.  Orthonormal wavelets and tight frames with arbitrary real dilations , 2000 .

[5]  Ole Christensen,et al.  Functions, Spaces, and Expansions , 2010 .

[6]  Bin Han,et al.  Tight wavelet frames generated by three symmetric B-spline functions with high vanishing moments , 2003 .

[7]  Hans G. Feichtinger,et al.  Advances in Gabor Analysis , 2012 .

[8]  I. Selesnick,et al.  Symmetric wavelet tight frames with two generators , 2004 .

[9]  O. Christensen An introduction to frames and Riesz bases , 2002 .

[10]  John S. Allen An Introductory Course , 1935 .

[11]  I. Daubechies,et al.  PAINLESS NONORTHOGONAL EXPANSIONS , 1986 .

[12]  T. Strohmer,et al.  Gabor Analysis and Algorithms: Theory and Applications , 1997 .

[13]  A. Janssen Duality and Biorthogonality for Weyl-Heisenberg Frames , 1994 .

[14]  Ole Christensen,et al.  On Dual Gabor Frame Pairs Generated by Polynomials , 2010 .

[15]  I. Daubechies,et al.  Framelets: MRA-based constructions of wavelet frames☆☆☆ , 2003 .

[16]  O. Christensen Frames and Bases: An Introductory Course , 2008 .

[17]  R. Young,et al.  An introduction to nonharmonic Fourier series , 1980 .

[18]  Claus Scheiderer,et al.  A real algebra perspective on multivariate tight wavelet frames , 2012, 1202.3596.

[19]  R. Duffin,et al.  A class of nonharmonic Fourier series , 1952 .

[20]  C. Chui,et al.  Compactly supported tight and sibling frames with maximum vanishing moments , 2001 .

[21]  Zuowei Shen,et al.  Compactly supported tight affine spline frames in L2(Rd) , 1998, Math. Comput..

[22]  Karlheinz Gröchenig,et al.  Foundations of Time-Frequency Analysis , 2000, Applied and numerical harmonic analysis.

[23]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[24]  P. Casazza THE ART OF FRAME THEORY , 1999, math/9910168.

[25]  Ole Christensen,et al.  Frames and Bases , 2008 .

[26]  Hong Oh Kim,et al.  Extensions of Bessel sequences to dual pairs of frames , 2013 .

[27]  I. Daubechies,et al.  Gabor Time-Frequency Lattices and the Wexler-Raz Identity , 1994 .

[28]  B. Han Matrix splitting with symmetry and symmetric tight framelet filter banks with two high-pass filters , 2013 .

[29]  A. Ron,et al.  Weyl-Heisenberg frames and Riesz bases in $L_2(\mathbb{R}^d)$ , 1997 .

[30]  Wenchang Sun,et al.  Expansion of frames to tight frames , 2009 .

[31]  Ole Christensen,et al.  Pairs of Dual Gabor Frame Generators with Compact Support and Desired Frequency Localization , 2006 .

[32]  Eric Weber,et al.  Affine frames, GMRA's, and the canonical dual , 2003 .

[33]  Y. Meyer Wavelets and Operators , 1993 .

[34]  Deguang Han,et al.  Dilations and Completions for Gabor Systems , 2009 .

[35]  A. Janssen The duality condition for Weyl-Heisenberg frames , 1998 .

[36]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[37]  B. Han Symmetric tight framelet filter banks with three high-pass filters☆ , 2014 .

[38]  A. Ron,et al.  Affine systems inL2 (ℝd) II: Dual systems , 1997 .

[39]  B. Han,et al.  Symmetric MRA tight wavelet frames with three generators and high vanishing moments , 2005 .

[40]  Maria Charina,et al.  An Algebraic Perspective on Multivariate Tight Wavelet Frames , 2013, Constructive Approximation.

[41]  Hong Oh Kim,et al.  On Parseval Wavelet Frames with Two or Three Generators via the Unitary Extension Principle , 2014, Canadian Mathematical Bulletin.

[42]  D. Walnut An Introduction to Wavelet Analysis , 2004 .

[43]  Qingtang Jiang,et al.  Parameterizations of Masks for Tight Affine Frames with Two Symmetric/Antisymmetric Generators , 2003, Adv. Comput. Math..

[44]  A. Ron,et al.  Affine Systems inL2(Rd): The Analysis of the Analysis Operator , 1997 .