Frames and Extension Problems II
暂无分享,去创建一个
[1] O. Christensen. Frames, Riesz bases, and discrete Gabor/wavelet expansions , 2001 .
[2] A. Ron. Review of An introduction to Frames and Riesz bases, applied and numerical Harmonic analysis by Ole Christensen Birkhäuser, Basel, 2003 , 2005 .
[3] Ingrid Daubechies,et al. The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.
[4] C. Chui,et al. Orthonormal wavelets and tight frames with arbitrary real dilations , 2000 .
[5] Ole Christensen,et al. Functions, Spaces, and Expansions , 2010 .
[6] Bin Han,et al. Tight wavelet frames generated by three symmetric B-spline functions with high vanishing moments , 2003 .
[7] Hans G. Feichtinger,et al. Advances in Gabor Analysis , 2012 .
[8] I. Selesnick,et al. Symmetric wavelet tight frames with two generators , 2004 .
[9] O. Christensen. An introduction to frames and Riesz bases , 2002 .
[10] John S. Allen. An Introductory Course , 1935 .
[11] I. Daubechies,et al. PAINLESS NONORTHOGONAL EXPANSIONS , 1986 .
[12] T. Strohmer,et al. Gabor Analysis and Algorithms: Theory and Applications , 1997 .
[13] A. Janssen. Duality and Biorthogonality for Weyl-Heisenberg Frames , 1994 .
[14] Ole Christensen,et al. On Dual Gabor Frame Pairs Generated by Polynomials , 2010 .
[15] I. Daubechies,et al. Framelets: MRA-based constructions of wavelet frames☆☆☆ , 2003 .
[16] O. Christensen. Frames and Bases: An Introductory Course , 2008 .
[17] R. Young,et al. An introduction to nonharmonic Fourier series , 1980 .
[18] Claus Scheiderer,et al. A real algebra perspective on multivariate tight wavelet frames , 2012, 1202.3596.
[19] R. Duffin,et al. A class of nonharmonic Fourier series , 1952 .
[20] C. Chui,et al. Compactly supported tight and sibling frames with maximum vanishing moments , 2001 .
[21] Zuowei Shen,et al. Compactly supported tight affine spline frames in L2(Rd) , 1998, Math. Comput..
[22] Karlheinz Gröchenig,et al. Foundations of Time-Frequency Analysis , 2000, Applied and numerical harmonic analysis.
[23] S. Mallat. Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .
[24] P. Casazza. THE ART OF FRAME THEORY , 1999, math/9910168.
[25] Ole Christensen,et al. Frames and Bases , 2008 .
[26] Hong Oh Kim,et al. Extensions of Bessel sequences to dual pairs of frames , 2013 .
[27] I. Daubechies,et al. Gabor Time-Frequency Lattices and the Wexler-Raz Identity , 1994 .
[28] B. Han. Matrix splitting with symmetry and symmetric tight framelet filter banks with two high-pass filters , 2013 .
[29] A. Ron,et al. Weyl-Heisenberg frames and Riesz bases in $L_2(\mathbb{R}^d)$ , 1997 .
[30] Wenchang Sun,et al. Expansion of frames to tight frames , 2009 .
[31] Ole Christensen,et al. Pairs of Dual Gabor Frame Generators with Compact Support and Desired Frequency Localization , 2006 .
[32] Eric Weber,et al. Affine frames, GMRA's, and the canonical dual , 2003 .
[33] Y. Meyer. Wavelets and Operators , 1993 .
[34] Deguang Han,et al. Dilations and Completions for Gabor Systems , 2009 .
[35] A. Janssen. The duality condition for Weyl-Heisenberg frames , 1998 .
[36] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[37] B. Han. Symmetric tight framelet filter banks with three high-pass filters☆ , 2014 .
[38] A. Ron,et al. Affine systems inL2 (ℝd) II: Dual systems , 1997 .
[39] B. Han,et al. Symmetric MRA tight wavelet frames with three generators and high vanishing moments , 2005 .
[40] Maria Charina,et al. An Algebraic Perspective on Multivariate Tight Wavelet Frames , 2013, Constructive Approximation.
[41] Hong Oh Kim,et al. On Parseval Wavelet Frames with Two or Three Generators via the Unitary Extension Principle , 2014, Canadian Mathematical Bulletin.
[42] D. Walnut. An Introduction to Wavelet Analysis , 2004 .
[43] Qingtang Jiang,et al. Parameterizations of Masks for Tight Affine Frames with Two Symmetric/Antisymmetric Generators , 2003, Adv. Comput. Math..
[44] A. Ron,et al. Affine Systems inL2(Rd): The Analysis of the Analysis Operator , 1997 .