Dynamic allometric scaling of tree biomass and size

[1]  C. Peng,et al.  Separating Regressions for Model Fitting to Reduce the Uncertainty in Forest Volume-Biomass Relationship , 2019, Forests.

[2]  Caixia Liu,et al.  Integration of multi-resource remotely sensed data and allometric models for forest aboveground biomass estimation in China , 2019, Remote Sensing of Environment.

[3]  H. Shugart,et al.  Assessing terrestrial laser scanning for developing non-destructive biomass allometry , 2018, Forest Ecology and Management.

[4]  M I Disney,et al.  Weighing trees with lasers: advances, challenges and opportunities , 2018, Interface Focus.

[5]  Pieter A. Zuidema,et al.  Does biomass growth increase in the largest trees? Flaws, fallacies and alternative analyses , 2017 .

[6]  C. Peng,et al.  Correcting the overestimate of forest biomass carbon on the national scale , 2016 .

[7]  Tak Fung,et al.  Review of allometric equations for major land covers in SE Asia: Uncertainty and implications for above- and below-ground carbon estimates , 2016 .

[8]  N. Picard,et al.  Should tree biomass allometry be restricted to power models , 2015 .

[9]  Hendrik Poorter,et al.  How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents , 2015, The New phytologist.

[10]  Hailemariam Temesgen,et al.  A Call to Improve Methods for Estimating Tree Biomass for Regional and National Assessments , 2015 .

[11]  Yusuke Onoda,et al.  Efficacy of generic allometric equations for estimating biomass: a test in Japanese natural forests. , 2015, Ecological applications : a publication of the Ecological Society of America.

[12]  H. L. Allen,et al.  Local and general above-stump biomass functions for loblolly pine and slash pine trees , 2014 .

[13]  G. Sileshi A critical review of forest biomass estimation models, common mistakes and corrective measures , 2014 .

[14]  B. Nelson,et al.  Improved allometric models to estimate the aboveground biomass of tropical trees , 2014, Global change biology.

[15]  Jennifer L. Schafer,et al.  Growth, Biomass, and Allometry of Resprouting Shrubs after Fire in Scrubby Flatwoods , 2014 .

[16]  Louis V. Verchot,et al.  Generic allometric models including height best estimate forest biomass and carbon stocks in Indonesia , 2013 .

[17]  Philippe Santenoise,et al.  Terrestrial laser scanning for measuring the solid wood volume, including branches, of adult standing trees in the forest environment , 2012 .

[18]  C. Field,et al.  Allometric growth and allocation in forests: a perspective from FLUXNET. , 2011, Ecological applications : a publication of the Ecological Society of America.

[19]  C. Peng,et al.  General allometric equations and biomass allocation of Pinus massoniana trees on a regional scale in southern China , 2011, Ecological Research.

[20]  Martial Bernoux,et al.  Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa , 2010 .

[21]  Richard A. Birdsey,et al.  Inventory-based estimates of forest biomass carbon stocks in China: A comparison of three methods , 2010 .

[22]  A. P. Abaimov,et al.  Mixed-power scaling of whole-plant respiration from seedlings to giant trees , 2010, Proceedings of the National Academy of Sciences.

[23]  E. Tjørve Shapes and functions of species–area curves (II): a review of new models and parameterizations , 2009 .

[24]  Matthias Peichl,et al.  Allometry and partitioning of above- and belowground tree biomass in an age-sequence of white pine forests , 2007 .

[25]  J. Dhôte,et al.  Development of total aboveground volume equations for seven important forest tree species in France , 2006 .

[26]  Karl J Niklas,et al.  A phyletic perspective on the allometry of plant biomass-partitioning patterns and functionally equivalent organ-categories. , 2006, The New phytologist.

[27]  Stephanie A. Bohlman,et al.  Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. , 2006, Ecology letters.

[28]  Mark G. Tjoelker,et al.  Universal scaling of respiratory metabolism, size and nitrogen in plants , 2006, Nature.

[29]  Jianguo Wu,et al.  Lack of Evidence for 3/4 Scaling of Metabolism in Terrestrial Plants , 2005 .

[30]  J. Chambers,et al.  Tree allometry and improved estimation of carbon stocks and balance in tropical forests , 2005, Oecologia.

[31]  G. Decocq,et al.  Silviculture-driven vegetation change in a European temperate deciduous forest , 2005 .

[32]  James H. Brown,et al.  The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization , 2005, Journal of Experimental Biology.

[33]  James H. Brown,et al.  Toward a metabolic theory of ecology , 2004 .

[34]  F. Bokma Evidence against universal metabolic allometry , 2004 .

[35]  Jan Kozłowski,et al.  Is West, Brown and Enquist's model of allometric scaling mathematically correct and biologically relevant? , 2004 .

[36]  Christian Wirth,et al.  Generic biomass functions for Norway spruce in Central Europe--a meta-analysis approach toward prediction and uncertainty estimation. , 2004, Tree physiology.

[37]  James H. Brown,et al.  A general model for ontogenetic growth , 2001, Nature.

[38]  J. Gayon,et al.  History of the Concept of Allometry , 2000 .

[39]  J. Weitz,et al.  Re-examination of the "3/4-law" of metabolism. , 2000, Journal of theoretical biology.

[40]  B. Parresol Assessing Tree and Stand Biomass: A Review with Examples and Critical Comparisons , 1999, Forest Science.

[41]  James H. Brown,et al.  Allometric scaling of plant energetics and population density , 1998, Nature.

[42]  James H. Brown,et al.  A General Model for the Origin of Allometric Scaling Laws in Biology , 1997, Science.

[43]  G. L. Martin,et al.  Comparison of constant and variable allometric ratios for estimating Populus tremuloides biomass , 1987 .

[44]  P. J. Wood,et al.  World Forest Biomass and Primary Production Data. , 1983 .

[45]  D. Sprugel,et al.  Correcting for Bias in Log‐Transformed Allometric Equations , 1983 .

[46]  J. Lopreato,et al.  General system theory : foundations, development, applications , 1970 .

[47]  J. Huxley,et al.  Terminology of Relative Growth , 1936, Nature.

[48]  J. Mascaro,et al.  Is logarithmic transformation necessary in allometry ? , 2014 .

[49]  J. Mascaro,et al.  Is logarithmic transformation necessary in allometry? Ten, one‐hundred, one‐thousand‐times yes , 2014 .

[50]  V. Usoltsev Forest biomass and primary production database for Eurasia. CD-version , 2013 .

[51]  Martial Bernoux,et al.  Estimating tree biomass of sub-Saharan African forests: a review of available allometric equations. , 2011 .

[52]  M. I C H A E,et al.  Carbon allocation in forest ecosystems , 2007 .

[53]  Raisa Mäkipää,et al.  Biomass and stem volume equations for tree species in Europe , 2005, Silva Fennica Monographs.

[54]  Richard A. Birdsey,et al.  Comprehensive database of diameter-based biomass regressions for North American tree species , 2004 .

[55]  Rebecca Campbell,et al.  A Comparison of Three Methods , 2003 .

[56]  L. Heath,et al.  Forest volume-to-biomass models and estimates of mass for live and standing dead trees of U.S. forests. , 2003 .

[57]  R. J. Smith Rethinking allometry. , 1980, Journal of theoretical biology.

[58]  M. Kleiber Body size and metabolism , 1932 .

[59]  M. Rubner,et al.  Ueber den Einfluss der Körpergrösse auf Stoff- und Kraftwechsel , 1883 .