Effect of cooling rate on the crystallization and mechanical behaviour of Zr–Ga–Cu–Ni metallic glass composition

[1]  J. Kruzic,et al.  The effect of low-temperature structural relaxation on free volume and chemical short-range ordering in a Au49Cu26.9Si16.3Ag5.5Pd2.3 bulk metallic glass , 2015 .

[2]  Jiangong Li,et al.  Evolution of shear bands, free volume, and structure in room temperature rolled Pd40Ni40P20 bulk metallic glass , 2015 .

[3]  H. Fan,et al.  Comparison of mechanical behaviors of several bulk metallic glasses for biomedical application , 2014 .

[4]  A. Makino,et al.  Mechanical properties and corrosion resistance of a new Zr56Ni20Al15Nb4Cu5 bulk metallic glass with a diameter up to 25 mm , 2014 .

[5]  H. Fan,et al.  The effect of cooling rate on the wear performance of a ZrCuAlAg bulk metallic glass , 2014 .

[6]  R. S. Tiwari,et al.  Glass forming ability, thermal stability and indentation characteristics of Ce75Al25−xGax metallic glasses , 2014 .

[7]  Jian Xu,et al.  Elevating the fracture toughness of Cu49Hf42Al9 bulk metallic glass: Effects of cooling rate and frozen-in excess volume , 2014 .

[8]  J. Eckert,et al.  Correlation between atomic structure evolution and strength in a bulk metallic glass at cryogenic temperature , 2014, Scientific Reports.

[9]  R. S. Tiwari,et al.  Hydrogenation of (Zr69.5Al7.5Cu12Ni11)100 − xTix quasicrystalline alloys and its effect on their structural and microhardness behavior , 2013 .

[10]  R. S. Tiwari,et al.  Synthesis and Indentation Behavior of Amorphous and Nanocrystalline Phases in Rapidly Quenched Cu–Ga–Mg–Ti and Cu–Al–Mg–Ti Alloys , 2013, Metallography, Microstructure, and Analysis.

[11]  Liangchi Zhang,et al.  Understanding the friction and wear mechanisms of bulk metallic glass under contact sliding , 2013 .

[12]  Devinder Singh,et al.  Enhanced microhardness of mechanically activated carbon–quasicrystal composite , 2012 .

[13]  J. Li,et al.  Effect of cooling rate on the bending plasticity of Zr55Al10Ni5Cu30 bulk metallic glass , 2012 .

[14]  E. Axinte Metallic glasses from “alchemy” to pure science: Present and future of design, processing and applications of glassy metals , 2012 .

[15]  Mingwei Chen A brief overview of bulk metallic glasses , 2011 .

[16]  R. S. Tiwari,et al.  Nanoindentation characteristics of Zr69.5Al7.5 − xGaxCu12Ni11 glasses and their nanocomposites , 2011 .

[17]  Devinder Singh,et al.  NANOINDENTATION STUDIES OF METALLIC GLASSES AND NANOQUASICRYSTAL–GLASS COMPOSITES IN Zr–Al (Ga)–Cu–Ni ALLOYS , 2011 .

[18]  Devinder Singh,et al.  Effect of Ti addition on the quasicrystalline phase formation and indentation characteristics of Zr69.5Al7.5Cu12Ni11 alloy , 2011 .

[19]  Jian Lu,et al.  Cooling rate effect on Young's modulus and hardness of a Zr-based metallic glass , 2011 .

[20]  Devinder Singh,et al.  Indentation characteristics of metallic glass and nanoquasicrystal-glass composite in Zr–Al (Ga)–Cu–Ni alloys , 2010 .

[21]  C. Liu,et al.  Atomistic free-volume zones and inelastic deformation of metallic glasses. , 2010, Nature materials.

[22]  Y. Chiu,et al.  Cooling rate effect of nanomechanical response for a Ti-based bulk metallic glass , 2010 .

[23]  R. S. Tiwari,et al.  Effect of Ga substitution on the crystallization behaviour and glass forming ability of Zr–Al–Cu–Ni alloys , 2010 .

[24]  R. Raghavan,et al.  Free-volume dependent pressure sensitivity of Zr-based bulk metallic glass , 2009 .

[25]  J. F. Löffler,et al.  Constitutive model for inhomogeneous flow in bulk metallic glasses , 2009 .

[26]  A. Castellero,et al.  Structural analysis of rapidly solidified Mg–Cu–Y glasses during room-temperature embrittlement , 2009 .

[27]  S. Sohn,et al.  Rate-dependent serrated flow and plastic deformation in Ti45Zr16Be20Cu10Ni9 bulk amorphous alloy during nanoindentation. , 2008 .

[28]  Jitang Fan,et al.  In‐Situ Precipitated Nanocrystal Beneficial to Enhanced Plasticity of Cu‐Zr Based bulk Metallic Glasses , 2008 .

[29]  E. Ma,et al.  Local order influences initiation of plastic flow in metallic glass: Effects of alloy composition and sample cooling history , 2008 .

[30]  A. Castellero,et al.  Bulk Metallic Glasses , 2008 .

[31]  Jianzhong Jiang,et al.  Free-volume-induced enhancement of plasticity in a monolithic bulk metallic glass at room temperature , 2008 .

[32]  A. Mandal,et al.  Indentation characteristics of rapidly solidified Al-Cu-V and Al-Cu-Ti alloys , 2008 .

[33]  J. Shen,et al.  Plasticity of a TiCu-based bulk metallic glass: Effect of cooling rate , 2007 .

[34]  U. Ramamurty,et al.  Synthesis of bulk metallic glass composites using high oxygen containing Zr sponge , 2007 .

[35]  T. Hufnagel,et al.  Mechanical behavior of amorphous alloys , 2007 .

[36]  Jingxue Sun,et al.  Bulk metallic glasses: Smaller is softer , 2007 .

[37]  Y. Liu,et al.  Cooling-rate induced softening in a Zr50Cu50 bulk metallic glass , 2007 .

[38]  Hongyu Zhang,et al.  Comparison of mechanical behavior between bulk and ribbon Cu-based metallic glasses , 2006 .

[39]  R. Raghavan,et al.  Ductile to brittle transition in the Zr41.2Ti13.75Cu12.5Ni10Be22.5 bulk metallic glass , 2006 .

[40]  P. Paufler,et al.  Micro- and nanoindentation techniques for mechanical characterisation of materials , 2006 .

[41]  J. Alcalá,et al.  The duality in mechanical property extractions from Vickers and Berkovich instrumented indentation experiments , 2005 .

[42]  Saumyadeep Jana,et al.  Hardness and plastic deformation in a bulk metallic glass , 2005 .

[43]  J. S. Jang,et al.  Crystallization and fracture behavior of the Zr65-xAl7.5Cu17.5Ni10Six bulk amorphous alloys , 2005 .

[44]  U. Ramamurty,et al.  Deformation morphology underneath the Vickers indent in a Zr-based bulk metallic glass , 2004 .

[45]  B. S. Murty,et al.  Synthesis of nanocrystalline/quasicrystalline Mg32(Al,Zn)49 by melt spinning and mechanical milling , 2004 .

[46]  Weihua Wang,et al.  Bulk metallic glasses , 2004 .

[47]  C. Schuh,et al.  Atomistic basis for the plastic yield criterion of metallic glass , 2003, Nature materials.

[48]  J. Embury,et al.  An analysis of microhardness of single-quasicrystals in the Al–Cu–Co–Si system , 2001 .

[49]  S. Roos,et al.  Formation of quasicrystals in bulk glass forming Zr–Cu–Ni–Al alloys , 1996 .

[50]  J. Cahoon,et al.  The determination of yield strength from hardness measurements , 1971, Metallurgical Transactions.

[51]  D. Turnbull,et al.  ON THE FREE-VOLUME MODEL OF THE LIQUID-GLASS TRANSITION. , 1970 .

[52]  R. S. Tiwari,et al.  Influence of Ga Substitution on the Nature of Glasses in Zr 69.5 Al 7.5-x Ga x Cu 12 Ni 11 and Ce 75 Al 25-x Ga x Metallic Glass Compositions , 2015 .

[53]  S. Sohn,et al.  Plastic deformation in nanostructured bulk glass composites during nanoindentation , 2009 .

[54]  J. Eckert,et al.  Correlation between enthalpy change and free volume reduction during structural relaxation of Zr55Cu30Al10Ni5 metallic glass , 2004 .

[55]  A. Inoue Stabilization of metallic supercooled liquid and bulk amorphous alloys , 2000 .