Max-plus algebra and max-plus linear discrete event systems: An introduction

We provide an introduction to the max-plus algebra and explain how it can be used to model a specific class of discrete event systems with synchronization but no concurrency. Such systems are called max-plus linear discrete event systems because they can be described by a model that is ldquolinearrdquo in the max-plus algebra. We discuss some key properties of the max-plus algebra and indicate how these properties can be used to analyze the behavior of max-plus linear discrete event systems. We also briefly present some control approaches for max-plus linear discrete event systems, including model predictive control. Finally, we discuss some extensions of the max-plus algebra and of max-plus linear systems.

[1]  B. Schutter "Max-Algebraic System Theory for Discrete Event Systems" , 1996 .

[2]  I. Necoara,et al.  Model predictive control for Max-Plus-Linear and piecewise affine systems , 2006 .

[3]  W. P. M. H. Heemels,et al.  THE EXTENDED LINEAR COMPLEMENTARITY PROBLEM — ALGORITHMIC ASPECTS , 2002 .

[4]  Bart De Schutter,et al.  Stable Model Predictive Control for Constrained Max-Plus-Linear Systems , 2007, Discret. Event Dyn. Syst..

[5]  Geert Jan Olsder,et al.  On the Characteristic Equation and Minimal Realizations for Discrete-Event Dynamic Systems , 1986 .

[6]  J. Quadrat,et al.  Max-Plus Algebra and System Theory: Where We Are and Where to Go Now , 1999 .

[7]  B. De Schutter,et al.  Modelling and control of discrete event systems using switching max-plus-linear systems , 2004 .

[8]  Bernard Giffler Schedule algebra: A progress report , 1968 .

[9]  S. Gaubert,et al.  Minimal (max,+) Realization of Convex Sequences , 1998 .

[10]  B. Ciffler Scheduling general production systems using schedule algebra , 1963 .

[11]  Peter Butkovic,et al.  Discrete-event dynamic systems: The strictly convex case , 1995, Ann. Oper. Res..

[12]  J. Boimond,et al.  Internal model control and max-algebra: controller design , 1996, IEEE Trans. Autom. Control..

[13]  Bart De Schutter,et al.  Properties of MPC for Max-Plus-Linear Systems , 2002, Eur. J. Control.

[14]  S. Gaubert On rational series in one variable over certain dioids , 1994 .

[15]  Stéphane Gaubert An algebraic method for optimizing resources in timed event graphs , 1990 .

[16]  Willi Hock,et al.  Lecture Notes in Economics and Mathematical Systems , 1981 .

[17]  Jan M. Maciejowski,et al.  Predictive control : with constraints , 2002 .

[18]  Peter Butkovic,et al.  Simple image set of (max, +) linear mappings , 2000, Discret. Appl. Math..

[19]  Bart De Schutter,et al.  The QR decomposition and the singular value decomposition in the symmetrized max-plus algebra , 1997, 1997 European Control Conference (ECC).

[20]  R. A. Cuninghame-Green,et al.  Describing Industrial Processes with Interference and Approximating Their Steady-State Behaviour , 1962 .

[21]  J. Quadrat,et al.  Numerical Computation of Spectral Elements in Max-Plus Algebra☆ , 1998 .

[22]  Bart De Schutter,et al.  On the equivalence of linear complementarity problems , 2002, Oper. Res. Lett..

[23]  J. Quadrat,et al.  Algebraic tools for the performance evaluation of discrete event systems , 1989, Proc. IEEE.

[24]  Laurent Hardouin,et al.  A First Step Towards Adaptive Control for Linear Systems in Max Algebra , 2000, Discret. Event Dyn. Syst..

[25]  Bart De Schutter,et al.  Model predictive control for max-plus-linear discrete event systems , 2001, Autom..

[26]  M. Gondran,et al.  Linear Algebra in Dioids: A Survey of Recent Results , 1984 .

[27]  G. Hooghiemstra,et al.  Discrete event systems with stochastic processing times , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[28]  Geert Jan Olsder,et al.  Cramer and Cayley-Hamilton in the max algebra , 1988 .

[29]  S. Gaubert Performance evaluation of (max, +) automata , 1995, IEEE Trans. Autom. Control..

[30]  S. Gaubert Theorie des systemes lineaires dans les dioides , 1992 .

[31]  Geert Jan Olsder,et al.  The power algorithm in max algebra , 1993 .

[32]  J. G. Braker,et al.  Algorithms and Applications in Timed Discrete Event Systems , 1993 .

[33]  Bart De Schutter,et al.  A method to find all solutions of a system of multivariate polynomial equalities and inequalities in the max algebra , 1996, Discret. Event Dyn. Syst..

[34]  Didier Dubois,et al.  A linear-system-theoretic view of discrete-event processes , 1983 .

[35]  C. Leake Synchronization and Linearity: An Algebra for Discrete Event Systems , 1994 .

[36]  Bertrand Cottenceau,et al.  Optimal closed-loop control of timed EventGraphs in dioids , 2003, IEEE Trans. Autom. Control..

[37]  Michel Minoux,et al.  Graphs and Algorithms , 1984 .

[38]  Ton J.J. van den Boom,et al.  Robust control of constrained max‐plus‐linear systems , 2009 .

[39]  B. Schutter On the ultimate behavior of the sequence of consecutive powers of a matrix in the max-plus algebra , 2000 .