Regulation of the plant defence response in arbuscular mycorrhizal symbiosis.

The response of plants to arbuscular mycorrhizal fungi involves a temporal and spatial activation of different defence mechanisms. The activation and regulation of these defences have been proposed to play a role in the maintenance of the mutualistic status of the association, however, how these defences affect the functioning and development of arbuscular mycorrhiza remains unclear. A number of regulatory mechanisms of plant defence response have been described during the establishment of the arbuscular mycorrhizal symbiosis, including elicitor degradation, modulation of second messenger concentration, nutritional and hormonal plant defence regulation, and activation of regulatory symbiotic gene expression. The functional characterization of these regulatory mechanisms on arbuscular mycorrhiza, including cross-talk between them, will be the aim and objective of future work on this topic.

[1]  M. Giovannetti,et al.  Cellular localization and cytochemical probing of resistance reactions to arbuscular mycorrhizal fungi in a ‘locus a’ myc− mutant of Pisum sativum L. , 1993, Planta.

[2]  E. Dumas‐Gaudot,et al.  New acidic chitinase isoforms induced in tobacco roots by vesicular-arbuscular mycorrhizal fungi , 1992, Mycorrhiza.

[3]  T. Boller,et al.  Chitinase in roots of mycorrhizal Allium porrum: regulation and localization , 1989, Planta.

[4]  H. Vierheilig,et al.  Signalling in arbuscular mycorrhiza: facts and hypotheses. , 2002, Advances in experimental medicine and biology.

[5]  T. Boller,et al.  Arbuscular mycorrhiza in mini‐mycorrhizotrons: first contact of Medicago truncatula roots with Glomus intraradices induces chalcone synthase , 2001 .

[6]  J. F. Marsh,et al.  Analysis of arbuscular mycorrhizas using symbiosis-defective plant mutants , 2001 .

[7]  F. Grundler,et al.  Imaging arbuscular mycorrhizal structures in living roots of Nicotiana tabacum by light, epifluorescence, and confocal laser scanning microscopy , 2001 .

[8]  P. Bonfante At the Interface Between Mycorrhizal Fungi and Plants: the Structural Organization of Cell Wall, Plasma Membrane and Cytoskeleton , 2001 .

[9]  I. Blilou,et al.  Induction of Ltp (lipid transfer protein) and Pal (phenylalanine ammonia-lyase) gene expression in rice roots colonized by the arbuscular mycorrhizal fungus Glomus mosseae. , 2000, Journal of experimental botany.

[10]  J. Downie,et al.  Dissection of nodulation signaling using pea mutants defective for calcium spiking induced by nod factors and chitin oligomers. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[11]  L. Schauser,et al.  The Lotus japonicus LjSym4 gene is required for the successful symbiotic infection of root epidermal cells. , 2000, Molecular plant-microbe interactions : MPMI.

[12]  E. Journet,et al.  Four Genes of Medicago truncatula Controlling Components of a Nod Factor Transduction Pathway , 2000, Plant Cell.

[13]  M. Parniske Intracellular accommodation of microbes by plants: a common developmental program for symbiosis and disease? , 2000, Current opinion in plant biology.

[14]  J. Ocampo,et al.  Hydrolytic enzymes and ability of arbuscular mycorrhizal fungi to colonize roots. , 2000, Journal of experimental botany.

[15]  T. Boller,et al.  Differential expression of eight chitinase genes in Medicago truncatula roots during mycorrhiza formation, nodulation, and pathogen infection. , 2000, Molecular plant-microbe interactions : MPMI.

[16]  P. Mann,et al.  Molecular analysis of the Arbuscular mycorrhiza symbiosis , 2000 .

[17]  I. Blilou,et al.  Induction of catalase and ascorbate peroxidase activities in tobacco roots inoculated with the arbuscular mycorrhizal Glomus mosseae , 2000 .

[18]  D. Douds,et al.  Current advances in mycorrhizae research , 2000 .

[19]  I. Blilou,et al.  Resistance of pea roots to endomycorrhizal fungus or Rhizobium correlates with enhanced levels of endogenous salicylic acid , 1999 .

[20]  J. M. Ruiz-Lozano,et al.  Defense genes are differentially induced by a mycorrhizal fungus and Rhizobium sp. in wild-type and symbiosis-defective pea genotypes , 1999 .

[21]  M. J. Harrison,et al.  MOLECULAR AND CELLULAR ASPECTS OF THE ARBUSCULAR MYCORRHIZAL SYMBIOSIS. , 1999, Annual review of plant physiology and plant molecular biology.

[22]  T. Boller,et al.  Hydrogen peroxide accumulation in Medicago truncatula roots colonized by the arbuscular mycorrhiza-forming fungus Glomus intraradices , 1999, Planta.

[23]  T. Bisseling,et al.  Legume nodulation and mycorrhizae formation; two extremes in host specificity meet , 1999, The EMBO journal.

[24]  A. Anderson,et al.  Regulation of arbuscule formation by carbon in the plant , 1998 .

[25]  M. Giovannetti,et al.  Meeting a non-host: the behaviour of AM fungi , 1998, Mycorrhiza.

[26]  J. Barea,et al.  Chitosanase and chitinase activities in tomato roots during interactions with arbuscular mycorrhizal fungi or Phytophthora parasitica , 1998 .

[27]  D. Inzé,et al.  H2O2 and NO: redox signals in disease resistance , 1998 .

[28]  M. Lambais,et al.  Spatial distribution of chitinases and β‐1,3‐glucanase transcripts in bean arbuscular mycorrhizal roots under low and high soil phosphate conditions , 1998 .

[29]  L. Schauser,et al.  Mycorrhiza Mutants of Lotus japonicus Define Genetically Independent Steps During Symbiotic Infection , 1998 .

[30]  T. Bisseling,et al.  Endomycorrhizae and rhizobial Nod factors both require SYM8 to induce the expression of the early nodulin genes PsENOD5 and PsENOD12A. , 1998, The Plant journal : for cell and molecular biology.

[31]  J. Sheen,et al.  Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucose-insensitive mutant. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[32]  John F. G. Atack,et al.  SIGNAL TRANSDUCTION PATHWAYS , 2022 .

[33]  G. Galili,et al.  Suppression of tobacco basic chitinase gene expression in response to colonization by the arbuscular mycorrhizal fungus Glomus intraradices. , 1998, Molecular plant-microbe interactions : MPMI.

[34]  Y. Kapulnik,et al.  Signal Transduction Pathways in Mycorrhizal Associations: Comparisons with the Rhizobium-Legume Symbiosis. , 1998, Fungal genetics and biology : FG & B.

[35]  I. Somssich,et al.  Pathogen defence in plants — a paradigm of biological complexity , 1998 .

[36]  T. Bisseling,et al.  Involvement of salicylic acid in the establishment of the Rhizobium meliloti-alfalfa symbiosis. , 1998 .

[37]  Y. Elad,et al.  GLOMUS INTRARADICES COLONIZATION REGULATES GENE EXPRESSION IN TOBACCO ROOTS , 1998 .

[38]  G. Bécard,et al.  Regulation of arbuscular mycorrhizal development by plant host and fungus species in alfalfa , 1998 .

[39]  J. Dénarié,et al.  Red carpet genetic programmes for root endosymbioses , 1997 .

[40]  Y. Eshed,et al.  Expression of early nodulin genes in alfalfa mycorrhizae indicates that signal transduction pathways used in forming arbuscular mycorrhizae and Rhizobium-induced nodules may be conserved. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[41]  M. Lambais,et al.  Soybean roots infected by Glomus intraradices strains differing in infectivity exhibit differential chitinase and β-1,3-glucanase expression , 1996 .

[42]  J. Ocampo,et al.  Purification of an arbuscular mycorrhizal endoglucanase from onion roots colonized by Glomus mosseae , 1996 .

[43]  V. Gianinazzi-Pearson,et al.  Plant Cell Responses to Arbuscular Mycorrhizal Fungi: Getting to the Roots of the Symbiosis. , 1996, The Plant cell.

[44]  J. Vessey,et al.  A nodulation (nod^+fix^-) mutant of Phaseolus vulgaris L.has nodule like structures lacking peripheral vascular bundles (Pvb^-) and is resistant to mycorrhizal infection (myc^-) , 1996 .

[45]  E. Dumas‐Gaudot,et al.  Cellular and molecular defence‐related root responses to invasion by arbuscular mycorrhizal fungi , 1996 .

[46]  W. Frommer,et al.  Systemic Acquired Resistance Mediated by the Ectopic Expression of Invertase: Possible Hexose Sensing in the Secretory Pathway. , 1996, The Plant cell.

[47]  A. Varma,et al.  Mycorrhiza : structure, function, molecular biology, and biotechnology , 1996 .

[48]  A. Anderson,et al.  Defense-Related Transcript Accumulation in Phaseolus vulgaris L. Colonized by the Arbuscular Mycorrhizal Fungus Glomus intraradices Schenck & Smith , 1996, Plant physiology.

[49]  T. Boller,et al.  Rhizobial Nodulation Factors Stimulate Mycorrhizal Colonization of Nodulating and Nonnodulating Soybeans , 1995, Plant physiology.

[50]  Y. Okon,et al.  Suppression of an Isoflavonoid Phytoalexin Defense Response in Mycorrhizal Alfalfa Roots , 1995, Plant physiology.

[51]  T. Boller,et al.  Colonization of Transgenic Tobacco Constitutively Expressing Pathogenesis-Related Proteins by the Vesicular-Arbuscular Mycorrhizal Fungus Glomus mosseae , 1995, Applied and environmental microbiology.

[52]  R. Dixon,et al.  Stress-Induced Phenylpropanoid Metabolism. , 1995, The Plant cell.

[53]  H. Beyrle The Role of Phytohormones in the Function and Biology of Mycorrhizas , 1995 .

[54]  R. Dixon,et al.  Spatial patterns of expression of flavonoid/isoflavonoid pathway genes during interactions between roots of Medicago truncatula and the mycorrhizal fungus Glomus versiforme , 1994 .

[55]  T. Boller,et al.  Ethylene Biosynthesis and Activities of Chitinase and ß-1,3-Glucanase in the Roots of Host and Non-Host Plants of Vesicular-Arbuscular Mycorrhizal Fungi after Inoculation with Glomus mosseae , 1994 .

[56]  Y. Elkind,et al.  A Vesicular Arbuscular Mycorrhizal Fungus (Glomus intraradix) Induces a Defense Response in Alfalfa Roots , 1994, Plant physiology.

[57]  Y. Piché,et al.  Pisum sativum mutants insensitive to nodulation are also insensitive to invasion in vitro by the mycorrhizal fungus, Gigaspora margarita , 1994 .

[58]  A. Osbourn,et al.  Advances in Molecular Genetics of Plant-Microbe Interactions , 1994, Current Plant Science and Biotechnology in Agriculture.

[59]  M. Lambais,et al.  Suppression of endochitinase, β-1,3-endoglucanase, and chalcone isomerase expression in bean vesicular-arbuscular mycorrhizal roots under different soil phosphate conditions , 1993 .

[60]  T. Boller,et al.  Research NotesColonization of TransgenicNicotiana sylvestrisPlants, Expressing Different Forms ofNicotiana tabacumChitinase, by the Root PathogenRhizoctonia solaniand by the Mycorrhizal SymbiontGlomus mosseae , 1993 .

[61]  R. Dixon,et al.  Isoflavonoid accumulation and expression of defense gene transcripts during the establishment of vesicular-arbuscular mycorrhizal associations in roots of Medicago truncatula , 1993 .

[62]  J. Ocampo,et al.  Cellulase production by the vesicular–arbuscular mycorrhizal fungus Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe , 1992 .

[63]  R. Koide,et al.  Regulation of the Vesicular-Arbuscular Mycorrhizal Symbiosis , 1992 .

[64]  D. Verma Molecular Signals in Plant-Microbe Communications , 1991 .

[65]  S. Bowley,et al.  Interactions between three alfalfa nodulation genotypes and two Glomus species. , 1991, The New phytologist.

[66]  J. Ocampo,et al.  Pectolytic enzymes in the vesicular-arbuscular mycorrhizal fungus Glomus mosseae , 1991 .

[67]  G. Duc,et al.  Genetic and Cellular Analysis of Resistance to Vesicular Arbuscular (VA) Mycorrhizal Fungi in Pea Mutants , 1991 .

[68]  D F Klessig,et al.  Salicylic Acid: A Likely Endogenous Signal in the Resistance Response of Tobacco to Viral Infection , 1990, Science.

[69]  H. Signer,et al.  Increase in Salicylic Acid at the Onset of Systemic Acquired Resistance in Cucumber , 1990, Science.

[70]  D. Morandi Effect of xenobiotics on endomycorrhizal infections and isoflavonoid accumulation in soybean roots , 1989 .

[71]  M. Allen,et al.  Responses of the non7hyphen;mycotrophic plant Salsola kali to invasion by vesicular–arbuscular mycorrhizal fungi , 1989 .

[72]  P. Spanu,et al.  Cell‐wall‐bound peroxidase activity in roots of mycorrhizal Allium porrum , 1988 .

[73]  F. Meins,et al.  Regulation of a plant pathogenesis-related enzyme: Inhibition of chitinase and chitinase mRNA accumulation in cultured tobacco tissues by auxin and cytokinin. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[74]  David T. Clarkson,et al.  Factors Affecting Mineral Nutrient Acquisition by Plants , 1985 .

[75]  J. Barea,et al.  Production of Plant Growth-Regulating Substances by the Vesicular-Arbuscular Mycorrhizal Fungus Glomus mosseae , 1982, Applied and environmental microbiology.

[76]  L. Abbott,et al.  Phosphorus and the formation of vesicular-arbuscular mycorrhizas , 1979 .