Twisted light communication through turbulent air across Vienna

The orbital-angular momentum (OAM) of light has recently emerged as a promising candidate for quantum and classical information systems. The discrete, unbounded state-space of OAM not only promises vastly enhanced data rates, but also an increased tolerance to eavesdropping in quantum communication. Numerous recent lab-scale experiments have found significant degradation in OAM mode quality while transmitting light carrying such modes through simulated turbulence. Here we experimentally realize the transmission of classical information encoded in the intensity patterns of 16 OAM mode superpositions through 3 km of strong turbulence over the city of Vienna. The average error rate is 1%. Our method relies on a novel detection scheme that identifies the mode intensity patterns using an artificial neuronal network. We show that in our method the relative phase between two modes is transmitted in a stable way. This opens the possibility for long-distance quantum communication with entangled OAM states.

[1]  David G Grier,et al.  Structure of optical vortices. , 2003, Physical review letters.

[2]  R. Noll Zernike polynomials and atmospheric turbulence , 1976 .

[3]  Xiaoli Sun,et al.  Free space laser communication experiments from Earth to the Lunar Reconnaissance Orbiter in lunar orbit. , 2013, Optics express.

[4]  R. Boyd,et al.  Simulating thick atmospheric turbulence in the lab with application to orbital angular momentum communication , 2013, 1301.7454.

[5]  Jeffrey H. Shapiro,et al.  Photon Information Efficient Communication Through Atmospheric Turbulence—Part II: Bounds on Ergodic Classical and Private Capacities , 2014, Journal of Lightwave Technology.

[6]  Yan Yan,et al.  Experiment turbulence compensation of 50-Gbaud/s orbital-angular-momentum QPSK signals using intensity-only based SPGD algorithm , 2014, OFC 2014.

[7]  Marcus Huber,et al.  Weak randomness in device-independent quantum key distribution and the advantage of using high-dimensional entanglement , 2013, 1301.2455.

[8]  A. Vaziri,et al.  Experimental quantum cryptography with qutrits , 2005, quant-ph/0511163.

[9]  Jian-Wei Pan,et al.  Quantum teleportation and entanglement distribution over 100-kilometre free-space channels , 2012, Nature.

[10]  M. Lavery,et al.  Efficient sorting of orbital angular momentum states of light. , 2010, Physical review letters.

[11]  Julio C Gutiérrez-Vega,et al.  Ince-Gaussian beams. , 2004, Optics letters.

[12]  A. Kolmogorov The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[13]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[14]  R. Boyd,et al.  Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding. , 2012, Optics Express.

[15]  H. Weinfurter,et al.  Entanglement-based quantum communication over 144km , 2007 .

[16]  M. Babiker,et al.  The angular momentum of light , 2012 .

[17]  C. Paterson,et al.  Atmospheric turbulence and orbital angular momentum of single photons for optical communication. , 2005, Physical review letters.

[18]  L. Torner,et al.  Twisted Photons: Applications of Light with Orbital Angular Momentum , 2011 .

[19]  Robert W Boyd,et al.  Efficient separation of the orbital angular momentum eigenstates of light , 2013, Nature Communications.

[20]  M. Neifeld,et al.  Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link. , 2008, Applied optics.

[21]  Anders Karlsson,et al.  Quantum key distribution using multilevel encoding: security analysis , 2001 .

[22]  Teuvo Kohonen,et al.  Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.

[23]  R. Fante,et al.  Electromagnetic beam propagation in turbulent media: An update , 1980, Proceedings of the IEEE.

[24]  A. Willner,et al.  Terabit free-space data transmission employing orbital angular momentum multiplexing , 2012, Nature Photonics.

[25]  J. Shapiro,et al.  Photon Information Efficient Communication Through Atmospheric Turbulence–Part I: Channel Model and Propagation Statistics , 2014, Journal of Lightwave Technology.

[26]  Xiaosong Ma,et al.  Quantum teleportation over 143 kilometres using active feed-forward , 2012, Nature.

[27]  R. Boyd,et al.  Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum. , 2009, Optics letters.

[28]  A. Vaziri,et al.  Entanglement of the orbital angular momentum states of photons , 2001, Nature.

[29]  M. Padgett,et al.  Advances in optical angular momentum , 2008 .

[30]  G. Vallone,et al.  Free-space quantum key distribution by rotation-invariant twisted photons. , 2014, Physical review letters.

[31]  S. Barnett,et al.  Free-space information transfer using light beams carrying orbital angular momentum. , 2004, Optics express.

[32]  A. Willner,et al.  Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers , 2013, Science.

[33]  D. Gauthier,et al.  High-dimensional quantum cryptography with twisted light , 2014, 1402.7113.

[34]  M. Padgett,et al.  Self-healing of quantum entanglement after an obstruction , 2014, Nature Communications.

[35]  A. Willner,et al.  100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength. , 2014, Optics letters.

[36]  Andrew Forbes,et al.  Propagation of orbital angular momentum carrying beams through a perturbing medium , 2013 .

[37]  Robert Fickler,et al.  Real-Time Imaging of Quantum Entanglement , 2012, Scientific Reports.

[38]  B. Thid'e,et al.  Encoding many channels on the same frequency through radio vorticity: first experimental test , 2011, 1107.2348.

[39]  Ivan B Djordjevic,et al.  Deep-space and near-Earth optical communications by coded orbital angular momentum (OAM) modulation. , 2011, Optics express.

[40]  A. Willner,et al.  Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing. , 2013, Optics letters.

[41]  Robert Fickler,et al.  Quantum Entanglement of High Angular Momenta , 2012, Science.